
USBmicro Products, Services, and Online Development
Notebook

Online Development Notebook > Index

Welcome to USBmicro!
USBmicro is your source for USB electrical device
interface products.

With the USBmicro products you can utilize the USB
port on your computer to interface to various
electronic devices. The USBmicro products provide a
range of devices that allow you to use your personal
computer to interface to and control lights, LCD
displays, SPI (3-wire interface) analog and memory
devices, 2-wire interfaces (such as I2C), stepper
motor drivers, switches, 1-wire (Dallas/Maxim)
devices, relays, and many custom circuits.

http://www.usbmicro.com/index.html

U401 USB Interface

U421 USB Interface

U451 USB Relay Interface

USBmicro products are available for purchase in the United States and select other
countries from CircuitGizmos

USBmicro products are available for purchase worldwide from Dontronics . Please
see this ordering page to order the U401/U421/U451 from Dontronics.

This is the Online Development Notebook (ODN) that provides development
information and application information for USBmicro products. A single-file version
of the ODN available for download is here (pdf file) Please be aware that this
version will very likely not be as up-to-date as the on-line version. The pdf file can
be opened in Adobe Acrobat Reader and may be much easier to print than the web
site.

Feedback about the ODN is encouraged. You can email the ODN author (" robert "
at usbmicro.com) with questions, suggestions, or information about errors.

All pages on this web site and all pages included in any off-line version of the ODN
are Copyright USBmicro, L.L.C. 2001-2010.

The U401 devices are SimmStick(TM) Compatible. Dontronics has a U.S. pending
trademark registration on "SimmStick", with the US Patent and Trademark Office.

http://www.usbmicro.com/apps/odn.pdf
http://www.dontronics.com/u401.html
file:///C:/Users/Owner/AppData/Local/Temp/.
http://www.dontronics.com/
http://www.circuitgizmos.com/

"Windows" is a trademark of Microsoft Corporation. "Macintosh" is a trademark of
Apple, Inc. "Red Hat" is a trademark of Red Hat, Inc. "Delphi" is a trademark of
Borland. "1-wire" is a trademark of Dallas/Maxim. Other trademarks are property of
their holders.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Products

Online Development Notebook > Index > Products

USBmicro Products

U401 USB I/O Interface

Newest U401 (Rev 3) front view. This newest U401 has a lightweight and removable USB
cable.

(Older board revisions, below)

U401 front view, older style with DIP U401 chip.

http://www.usbmicro.com/index.html

U401 back view, newer style with surface-mount U401 chip.

USBmicro has released the U401 USB Interface, a fully assembled and tested
device to interface to your PC (Win/Linux) or Mac (OSX) via USB. The U401 is in a
"SimmStick" format. Please see the FAQ for differences in the components used in
the pictures.

U421 USB I/O Interface

U421 top view.

USBmicro also has the U421 USB Interface. This is also a fully assembled and
tested device to interface to your PC (Win/Linux) or Mac (OSX) via USB. The PCB of
the U421 is in a 24-pin "DIP-like" format.

USBmicro products shipped to Europe are produced without lead.

U451 USB Relay I/O Interface

guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

The U451 provides a simple digital i/o interface for the PC (Win/Linux) or Mac
(OSX) . Two relays, six transistor outputs, and eight i/o lines from the
microcontroller are provided. Commands can be sent to the U451 that change the
eight i/o lines from input to output. I/o lines can be individually selected as inputs
or outputs. The U451 supports commands to read the ports, and if the ports are set
to output, to write to the ports.

U401/U421/U451 USB I/O Interface
The U401/U421/U451 provides a simple digital i/o interface for the PC (Win/Linux)
or Mac (OSX). Sixteen i/o lines from the microcontroller are provided. Commands
can be sent to the U401/U421/U451 that change the i/o lines from input to output.
I/O lines can be individually selected as inputs or outputs. The U401/U421/U451
supports commands to read the ports, and if the ports are set to output, to write to
the ports.

The U401/U421/U451 is an interface to SPI devices. The firmware on the
U401/U421/U451 provides generic access to read and write SPI devices. The SPI
clock rate can be adjusted to 62.5 kHz, 500 kHz, 1 MHz, or 2 MHz. Because
additional pins are available as generic i/o, the U401 can use these lines as slave
select lines and address multiple SPI devices.

The SPI subsystem of the U401/U421/U451 can be used as a master to
communicate with SPI devices such as EEPROMS and A/D converters. The
U401/U421/U451 can also be used as a SPI slave to a microcontroller that uses the
U401/U421/U451 as a gateway to the PC (Win/Linux) or Mac (OSX) . A PIC or an
AVR, for example, can act as a SPI master to communicate data with the
U401/U421/U451, which can then transfer the data to a PC (Win/Linux) or Mac
(OSX) application.

The U401/U421 is a convenient way to interface a standard Hitachi-type of
intelligent LCD controller to USB. The commands that support communication to
the LCD module are the "standard" LCD commands. Standard commands include

writing characters to the display, and controlling the display.

USB interfacing is simple with the U401/U421/U451 - There are no USB drivers to
write and there is no device firmware to develop. There are sample applications
that will get you started in minutes. The sample code is available to change for
your application.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Order USBmicro Products

Online Development Notebook > Index > Order USBmicro Products

Ordering USBmicro Products

Distributors

USBmicro products are available for purchase in the United States and select other
countries from CircuitGizmos

USBmicro products are available for purchase worldwide from Dontronics . Please
see this ordering page to order the U401/421 from Dontronics.

Please see App5: SimmSticks for some SimmStick information.

StrandControl (www.homedomination.com) sells the U401, U421, U451, and the
special U421-SC3. They can be purchased with the home automation software, or
separately.

Please see App11: Home Domination for more information about Home
Domination.

guidnode://CC02B97103B20D24AC55A301A84E9E59DAF2F709
http://www.homedomination.com/
guidnode://A063E8F6DA1D0474A87A400FF3E1D36D4522883A
http://www.dontronics.com/u401.html
file:///C:/Users/Owner/AppData/Local/Temp/.
http://www.dontronics.com/
http://www.circuitgizmos.com/
http://www.usbmicro.com/index.html

Kadtronix sells the U401/U421 bundled with the control program called Digio.
Please see the Kadtronix web site or the Digio app note.

Please see App6: Digio for more information about Digio.

Product Shipping
USBmicro ships products via USPS for US delivery and via Airmail for
international delivery. When shipped via USPS or Airmail a tracking
number is not created.

Because of the time zone differences, products ordered from Dontronics
are delayed by the slow spin of the earth. Shipments will be affected by
this.

Shipments to countries outside of the United States are likely to incur
additional costs. It is the receiver's responsibility to pay for these fees.
Such fees could be inport duties or local taxes. USBmicro is not involved in
this process.

If a shipment is damaged or lost, you must contact the carrier or import
office for your claim. Because there are some countries where a large
number of packages are lost or stolen, USBmicro reserves the right to not
ship to select countries.

Privacy
All information provided to USBmicro for product shipment will be kept private.
USBmicro never shares private information.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92
http://www.kadtronix.com/
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92

Product Design

Online Development Notebook > Index > Product Design

USBmicro Product Design

Product design service
USBmicro designs custom and semi-custom USB devices, embedded web servers,
CAN devices, Home Automation devices, and other embedded controllers. Contact
us for engineering development. USBmicro provides complete hardware design,
software design, consulting, and engineering services.

USBmicro has experience with commercial and medical devices. USBmicro is willing
to adapt standard devices, such as the U401/U421/U451, with custom software.

Email about project design can be directed to " Robert " at usbmicro.com

Some of the USBmicro experience that can benefit you are:

I. USB embedded device design expertise

II. Experience with a significant number of microcontrollers

III. ARM, many manufacturers

IV. PIC micro (all families)

V. Atmel AVR, from the small ATtiny to the ATmega

VI. Zilog Z80, Z8

VII. Intel 8051 family (Intel, Philips, Atmel, Cypress)

VIII.Cypress M8/Encore/8051

IX. Mitsubishi

X. TI '430

XI. Motorola (8/16/32 bit)

XII. Infineon

XIII.Embedded Hardware Design, Embedded Firmware in Assembly and C

XIV. Schematic Capture, Library Creation, PCB Design

http://www.usbmicro.com/index.html

XV. Application Tool Development on Windows

XVI.Prototyping Service

XVII. Low-volume Production Service

XVIII. Project Documentation using Internally Developed Standards

XIX.Command-line Tool Development in Linux

XX. Home Automation Device Development

XXI.Point-of-Sale Kiosks

XXII. Security System Development

XXIII. Medical Device Development

XXIV. Embedded Experience in Aviation Industry

XXV. Commercial Building Automation Device Design

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Contacting USBmicro

Online Development Notebook > Index > Contacting USBmicro

Contacting USBmicro

Contacts for USBmicro
Listed below is contact information for USBmicro, L.L.C.

Please send an email to the contact addresses listed below and place "U401",
"U421", or "U4x1" in the message subject line. There is a lot of spam email
received and filtered - once in a while a "good" email is the victim of the filter.

Also take a look at the CircuitGizmos blog!

USBmicro Products
If you have questions about any USBmicro products, contact " Robert " at
usbmicro.com.

Engineering/ Embedded Design
If you are interested in product design, contact " Robert " at usbmicro.com.

USBmicro designs custom and semi-custom USB devices, embedded web servers,
CAN devices, Home Automation devices, and other embedded controllers. We have
wide microcontroller experience "from Atmel to Zilog". Contact us for engineering
development. Please see the Product Design page.

USBmicro is willing to adapt standard devices, such as the U401/U421/U451, with
custom software.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://0C89EA6196C07E6C8211D3D44DA3639AECE2706D
http://www.circuitgizmos.com/wordpress/index.php
http://www.usbmicro.com/index.html

information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

U401 USB Interface

Online Development Notebook > Index > U401 USB Interface

The USBmicro U401 USB Interface

The U401 is a USB solution that is pre-built, pre-programmed, and pre-tested and
will get you interfacing your PC (Win/Linux) or Mac (OSX) to various devices in very
little time! There is no USB device assembly, no driver development, and no
firmware to write. In many cases the U401 can be plugged into an experimenter's
breadboard and circuit interfacing can begin immediately. Demo software
applications can be used "right out of the box".

Newest U401 (Rev 3) front view. This newest U401 has a lightweight and removable USB
cable.

http://www.usbmicro.com/index.html

U401 front view, style with DIP U401 chip.

U401 back view, style with SMT U401 chip.

Please see the FAQ for differences in the components used in
the pictures.

Features of the U401 USB Interface

XXVI. USB Interface to PC (Win/Linux) or Mac (OSX)

XXVII. Uses HID Drivers Inherent in OS

XXVIII. SimmStick(TM) Compatibility

XXIX. Sixteen I/O Lines

XXX. SPI Master and Slave Communication

XXXI. LCD Interface Commands

XXXII. Stepper motor control

XXXIII. 1-Wire Communication Interface

XXXIV. Flexible Pin Use

XXXV. Free Compiled Sample Applications

XXXVI.Visual Basic, C, Delphi Example Code Available

XXXVII. Fully Assembled and Tested

XXXVIII. Great Replacement for Parallel Port Interfacing

XXXIX.PC's USB Power Brought to SimmBus

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7

XL. Easy to Use with Solderless Breadboards

XLI. USB Cable Provided

XLII. Available in Lead-Free for Europe

Overview of the U401 USB Interface
The U401 provides a simple digital i/o interface for the PC (Win/Linux) or Mac
(OSX) . Sixteen i/o lines from the microcontroller are provided. Commands can be
sent to the U401 that change the i/o lines from input to output. I/O lines can be
individually selected as inputs or outputs. The U401 supports commands to read
the ports, and if the ports are set to output, to write to the ports.

The U401 is an interface to SPI (Serial Peripheral Interface) devices. SPI is a local
synchronous serial bus that uses a clock line, two data lines, and a device select
line for communication between a serial device and a host microcontroller. The
firmware on the U401 provides generic access to read and write SPI devices. The
SPI clock rate can be adjusted to 62.5 kHz, 500 kHz, 1 MHz, or 2 MHz. Because
additional pins are available as generic i/o, the U401 can use these lines as slave
select lines and address multiple SPI devices.

The SPI subsystem of the U401 can be used as a master to communicate with SPI
devices such as EEPROMS and A/D converters. The U401 can also be used as a SPI
slave to a microcontroller that uses the U401 as a gateway to the PC (Win/Linux) or
Mac (OSX) . A PIC, for example, can act as a SPI master to communicate data with
the U401, which can then transfer the data to a PC (Win/Linux) or Mac (OSX)
application. Most microcontrollers can communicate via SPI with software-driven
routines, many have internal SPI hardware. SPI hardware is present on
microcontrollers from little 8-bit devices, like the PIC, to 32-bit microcontrollers like
the 680x0-based devices.

The U401 is a convenient way to interface a standard Hitachi-type of intelligent LCD
controller to USB. The commands that support communication to the LCD module
are the "standard" LCD commands. Standard commands include writing characters
to the display, and controlling the display.

The U401 is an assembled and tested circuit card that is 3.5 inches (88.9mm) long
and 1.0 inches (25.4mm) wide. This is the same size as a "One Inch SimmStick".
Although the U401 is not a SIMM card and will not fit into a SIMM socket, the card
can still be used as a host to SimmSticks, or can be used as a SimmStick when not
using the SIMM sockets.

The U401 is SimmStick Compatible, the PCB has compatible dimensions and
connector layout as a SimmStick. The U401 uses a compatible SimmStick bus
layout. There are no square pads (not meant to fit in the SIMM socket), but the
spacing for that connector is still maintained. See the ODN Application section,
App5: SimmSticks, for examples of using the U401 with SimmSticks.

guidnode://A063E8F6DA1D0474A87A400FF3E1D36D4522883A

The U401 interfaces to the PC (Win/Linux) or Mac (OSX) via the USB port. An
application on the PC (Win/Linux) or Mac (OSX) controls the U401. The U401 does
not use any custom drivers, just the drivers that are a part of the operating
system. Custom software can be developed to use the U401, or the applications
that have been created as examples here can also be used.

Uses for the U401 USB Interface
With the U401 you can utilize the USB port on your computer to interface to
various electronic devices, such as: lights, LCD displays, SPI analog and memory
devices, switches, relays, tethered robots, model railroad control, and many
custom circuits.

See the ODN U4x1 Application Notes section for examples of using the U401.

Product suitability for your particular purpose/use
We have made every attempt to prepare information about the products we carry
so that you, as a customer, can make an informed decision to purchase or not. It is
entirely at your discretion to make this decision and we do not guarantee that a
product will be suitable for any particular purpose.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

U401 Specs

Online Development Notebook > Index > U401 USB Interface > U401 Specs

U401 Specifications

Board Size: 3.5 inches (88.9 mm) long and 1.0 inches (25.4 mm) wide.

Board Type: SimmStick(TM) Compatible, (but not intended for SIMM socket).

Computer Interface: USB

USB Cable Length: 36 inches (914 mm).

USB Connection type: Removable cable.

USB Power Type: Bus powered, uses the 5V provided by the USB interface.

Specified USB allowed current draw: 100 mA standard, total.

Bandwidth: 800 bytes per second as a HID device.

USB Bus Speed: 1.5 Mbits/s. (Low speed)

USB Driver: HID, part of the operating system.

Device Interface: 16 CMOS lines, selectable as inputs/outputs.

Controller Device: Cypress CY7C63743.

USB Cable Pin#, Color, Function Chart

Pin
Number

Wire
Color

Function

1 Red Vusb

2 White D-

guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/index.html

3 Green D+

4 Black Ground/Shield

PC USB Port (Female 'A')

Board Layout:

J1

J2

www.USBmicro.com
© 2002

Size and Clearance:

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U401 Pinouts

Online Development Notebook > Index > U401 USB Interface > U401 Pinouts

U401 Connector Pin Out

Main Connector:
Along the long edge of the board is the SimmBus compatible connector, "J1". "J2" is
immediately next to J1, and is connected one-to-one electrically.

Pin
Numb
er

SimmStic
k Signal

SimmStick Signal
Description

U401 Signal

1 A1 Special IO <nc> (Pin 1 is located next to the silk screen
"J1".)

2 A2 Special IO <nc>

3 A3 Special IO <nc>

4 PWR Unregulated DC
7.5 to 18V

 <nc>

5 A4 Special IO <nc>

6 A5 Special IO <nc>

7 +5V +5V +5V USB from PC

8 RES Reset (Active low) <nc>

9 GND Ground GND

10 SCL I2C Clock optional pull up

11 SDA I2C Data optional pull up

12 SI Serial In <nc>

guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/index.html

13 SO Serial Out <nc>

14 A6 Special IO <nc>

15 D0 General Purpose IO PA.0 - Port A bit 0 (stepper motor control)

16 D1 General Purpose IO PA.1 - Port A bit 1 (stepper motor control)

17 D2 General Purpose IO PA.2 - Port A bit 2 (stepper motor control) (2-
wire clock)

18 D3 General Purpose IO PA.3 - Port A bit 3 (stepper motor control) (2-
wire data)

19 D4 General Purpose IO
(SS in slave mode)

PA.4 - Port A bit 4 (stepper motor control)

20 D5 General Purpose IO
SPI MOSI

PA.5 - Port A bit 5 (stepper motor control)

21 D6 General Purpose IO
SPI MISO

PA.6 - Port A bit 6 (stepper motor control)

22 D7 General Purpose IO
SPI SCK

PA.7 - Port A bit 7 (stepper motor control)

23 D8 General Purpose IO PB.0 - Port B bit 0

24 D9 General Purpose IO PB.1 - Port B bit 1

25 D10 General Purpose IO PB.2 - Port B bit 2

26 D11 General Purpose IO PB.3 - Port B bit 3

27 D12 General Purpose IO PB.4 - Port B bit 4

28 D13 General Purpose IO PB.5 - Port B bit 5

29 D14 General Purpose IO PB.6 - Port B bit 6

30 D15 General Purpose IO PB.7 - Port B bit 7

Other Connectors:
J3 is the USB connection. J4 and J5 are for factory use.

Power Connection:
The +5V available on pin 7 of the SimmBus is the power from the computer's USB
port. Up to 100mA can be drawn from this supply to power devices attached to the
U401. If more power is needed, an external supply should be used to power
additional circuits. Do not attach the +5V from an external supply to this pin. The
ground connection of the SimmBus should be common to any external power
supply ground as well as any target circuits.

SimBus I2C Connection:
The pins labled "SCL" and "SDA" are the SimBus I2C connections. On the U401 the
connections are not made to the microcontroller. There are two unpopulated PCB
positions for pull-up resistors for these lines. The I2C communication interface
relies on a passive pull-up and an active pull-down. The positions can be populated
with resistors if no other pull-up resistors exist on the SimmBus I2C lines.

Board Layout:

Please see the FAQ for information about the components used in the picture.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7

Newest U401 (Rev 3) front view. This newest U401 has a lightweight and removable USB
cable.

Note that all lines extend from J1 to J2. There are then some J1 lines that only
connect to J2, and no other circuitry.

J1

J2

www.USBmicro.com
© 2002

Pin 1 on the U401 is located on the left, as you look at the board in the orientation
above. Pin 30 is the pin on the far right.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U401 Capabilities

Online Development Notebook > Index > U401 USB Interface > U401 Capabilities

U401 Capabilities

Digital I/O Interface
The U401 can be programmed to be a simple digital i/o interface for the PC
(Win/Linux) or Mac (OSX) . There are two 8-bit ports, thus sixteen i/o lines. There
are two commands that set port A and port B i/o directions. The individual lines of
the port can be set to inputs or outputs on a per line basis, but the command to set
the direction operates on an entire port.

The ports can be read with two distinct port read commands. The state of the lines
that are set as inputs are returned with the read command. The state of any line
that is not set as an input is undetermined and should be ignored.

The ports, when set as outputs, can be written to on a byte-wide basis with two
distinct port write commands. Individual line states may be changed with a set of
commands that mask the port state and affect only user-specified lines.

A set of commands allow for a byte write to one port, while strobing a user-
selected line from another port. The strobe can be either negative-going or
positive-going.

LCD Interface
The U401 is a convenient way to interface a standard Hitachi-type of intelligent LCD
controller to USB. The commands that support communication to the LCD module
are the "standard" LCD commands. Standard commands include writing characters
to the display, and controlling the display.

SPI Master
The U401 is an interface to SPI devices. The firmware on the U401 provides generic
access to read and write SPI devices. The SPI clock rate can be adjusted to 62.5
kHz, 500 kHz, 1 MHz, or 2 MHz. Because additional pins are available as generic
i/o, the U401 can use these lines as slave select lines and address multiple SPI
devices.

guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/index.html

SPI Slave
The U401 can be operated as a SPI slave device. A microcontroller circuit external
to the device can transfer data via SPI into the U401. The data can then be read
from the PC (Win/Linux) or Mac (OSX) with an application. The external processor
could be, for example, a PIC that performs data collection and filtering from an
analog sensor, and transfers readings to the PC (Win/Linux) or Mac (OSX) via the
U401.

Stepper Motor Control
The U401 can be operated as a two channel stepper motor controller. The U401 can
interface to various types of stepper motor driver circuits. The stepper sequence
can be "Wave", "Full", or "Half" with control over direction, speed, and step count.

1-Wire Interface
The U401 can interface with 1-wire devices (temperature sensors, i/o ports, etc)
either on each individual U401 device pin, or on a bus of multiple 1-wire devices.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U421 USB Interface

Online Development Notebook > Index > U421 USB Interface

The USBmicro U421 USB Interface

The U421 is a USB solution that is pre-built, pre-programmed, and pre-tested and
will get you interfacing your PC (Win/Linux) or Mac (OSX) to various devices in very
little time! There is no USB device assembly, no driver development, and no
firmware to write. In many cases the U421 can be plugged into an experimenter's
breadboard and circuit interfacing can begin immediately. Demo software
applications can be used "right out of the box".

http://www.usbmicro.com/index.html

U421 top view.

Features of the U421 USB Interface

XLIII. USB Interface to PC

XLIV. Uses HID Drivers Inherent in OS

XLV. Sixteen I/O Lines

XLVI. SPI Master and Slave Communication

XLVII. LCD Interface Commands

XLVIII. Stepper motor control

XLIX. 1-Wire Communication Interface

L. Flexible Pin Use

LI. Free Compiled Sample Applications

LII. Visual Basic, C, Delphi Example Code Available

LIII. Fully Assembled and Tested

LIV. Great Replacement for Parallel Port Interfacing

LV. PC's USB Power Brought to Device

LVI. Easy to Use with Solderless Breadboards

LVII. USB Cable Provided

LVIII. Available in Lead-Free for Europe

Overview of the U421 USB Interface
The U421 provides a simple digital i/o interface for the PC (Win/Linux) or Mac
(OSX) . Sixteen i/o lines from the microcontroller are provided. Commands can be
sent to the U421 that change the i/o lines from input to output. I/o lines can be
individually selected as inputs or outputs. The U421 supports commands to read
the ports, and if the ports are set to output, to write to the ports.

The U421 is an interface to SPI (Serial Peripheral Interface) devices. SPI is a local
synchronous serial bus that uses a clock line, two data lines, and a device select
line for communication between a serial device and a host microcontroller. The
firmware on the U421 provides generic access to read and write SPI devices. The
SPI clock rate can be adjusted to 62.5 kHz, 500 kHz, 1 MHz, or 2 MHz. Because
additional pins are available as generic i/o, the U421 can use these lines as slave
select lines and address multiple SPI devices.

The SPI subsystem of the U421 can be used as a master to communicate with SPI
devices such as EEPROMS and A/D converters. The U421 can also be used as a SPI
slave to a microcontroller that uses the U421 as a gateway to the PC (Win/Linux) or
Mac (OSX) . A PIC, for example, can act as a SPI master to communicate data with
the U421, which can then transfer the data to a PC (Win/Linux) or Mac (OSX)
application. Most microcontrollers can communicate via SPI with software-driven
routines, many have internal SPI hardware. SPI hardware is present on
microcontrollers from little 8-bit devices, like the PIC, to 32-bit microcontrollers like
the 680x0-based devices.

The U421 is a convenient way to interface a standard Hitachi-type of intelligent LCD
controller to USB. The commands that support communication to the LCD module
are the "standard" LCD commands. Standard commands include writing characters
to the display, and controlling the display.

The U421 is an assembled and tested circuit card that is 1.5 inches (38.1mm) long

and 0.75 inches (19.1mm) wide. The U421 is a printed circuit board in a 24-pin
"DIP-like" format.

The U421 interfaces to the PC (Win/Linux) or Mac (OSX) via the USB port. An
application on the PC (Win/Linux) or Mac (OSX) controls the U421. The U421 does
not use any custom drivers, just the drivers that are a part of the operating
system. Custom software can be developed to use the U421, or the applications
that have been created as examples here can also be used.

Uses for the U421 USB Interface
With the U421 you can utilize the USB port on your computer to interface to
various electronic devices, such as: lights, LCD displays, SPI analog and memory
devices, switches, relays, tethered robots, model railroad control, and many
custom circuits.

See the ODN U4x1 Application Notes section for examples of using the U421.

Product suitability for your particular purpose/use
We have made every attempt to prepare information about the products we carry
so that you, as a customer, can make an informed decision to purchase or not. It is
entirely at your discretion to make this decision and we do not guarantee that a
product will be suitable for any particular purpose.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

U421 Specs

Online Development Notebook > Index > U421 USB Interface > U421 Specs

U421 Specifications

Board Size: 1.5 inches (38.1mm) long and 0.75 inches (19.1mm) wide.

Board Type: 24-pin PCB in a "DIP-like" format, rows spaced .6" (15.2mm) apart.

Computer Interface: USB

USB Cable Length: 36 inches (914 mm).

USB Connection type: Removable cable.

USB Power Type: Bus powered, uses the 5V provided by the USB interface.

Specified USB allowed current draw: 100mA standard, total.

Bandwidth: 800 bytes per second as a HID device.

USB Bus Speed: 1.5Mbits/s. (Low speed)

USB Driver: HID, part of the operating system.

Device Interface: 16 CMOS lines, selectable as inputs/outputs.

Controller Device: Cypress CY7C63743.

USB Cable Pin#, Color, Function Chart

Pin
Number

Wire
Color

Function

1 Red Vusb

2 White D-

guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
http://www.usbmicro.com/index.html

3 Green D+

4 Black Ground/Shield

PC USB Port (Female 'A')

Board Layout:

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U421 Pinouts

Online Development Notebook > Index > U421 USB Interface > U421 Pinouts

U421 PCB Pin Out

"DIP-like" Connector:

Pin
Numb
er

U421 Signal

1 PA.0 - Port A bit 0 (stepper motor control)

2 PA.1 - Port A bit 1 (stepper motor control)

3 PA.2 - Port A bit 2 (stepper motor control) (2-wire clock)

4 PA.3 - Port A bit 3 (stepper motor control) (2 wire data)

5 PB.0 - Port B bit 0

6 PB.2 - Port B bit 2

7 PB.4 - Port B bit 4

8 PB.6 - Port B bit 6

9 Ground

10 No Connect

11 No Connect

12 Do not use

13 No Connect

14 +5V (USB)

guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
http://www.usbmicro.com/index.html

15 USB D- (already connected to the USB cable)

16 USB D+ (already connected to the USB cable)

17 PB.7 - Port B bit 7

18 PB.5 - Port B bit 5

19 PB.3 - Port B bit 3

20 PB.1 - Port B bit 1

21 PA.7 - Port A bit 7 (or SPI SCK) (stepper motor control)

22 PA.6 - Port A bit 6 (or SPI MISO) (stepper motor control)

23 PA.5 - Port A bit 5 (or SPI MOSI) (stepper motor control)

24 PA.4 - Port A bit 4 (or SPI SS [when in slave mode]) (stepper motor control)

Other Connectors:
There is a 2x6 pad layout on the board that can be used for connection to an AVR
(such as an ATtiny) for programming. The 1x2 jumper applies 5V to this header.
(Newest U421 board does not have this jumper - the 5V is on ther 2x6 header.)
The AVR programmer header follows that of the standard 2x6 AVR programming
connector. Connections must be made on the component pads to allow signals out
to this header.

The U421-SC3 (available through StrandControl) uses this connection for a way to
attach 1-Wire devices. Connections must be made on the component pads to allow
signals out to the screw terminal - the 'SC3' is sold with the right connections
made.

Power Connection:
The +5V available on pin 14 is the power from the computer's USB port. Up to
100mA can be drawn from this supply to power devices attached to the U421. If
more power is needed, an external supply should be used to power additional
circuits. Do not attach the +5V from an external supply to this pin. The ground
connection should be common to any external power supply ground as well as any
target circuits.

Board Layout:

http://www.homedomination.com/

(U421-SC3 screw terminal version of the U421 available through StrandControl) A standard
U421 does not have the screw terminal.

Pin 1 on the U421 is located on the lower left, as you look at the board in the
orientation above. Pin 24 is the pin on the upper left. The lower row therefore is 1-
12, the upper row is 24-13.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.homedomination.com/

U421 Capabilities

Online Development Notebook > Index > U421 USB Interface > U421 Capabilities

U421 Capabilities

Digital I/O Interface
The U421 can be programmed to be a simple digital i/o interface for the PC
(Win/Linux) or Mac (OSX) . There are two 8-bit ports, thus sixteen i/o lines. There
are two commands that set port A and port B i/o directions. The individual lines of
the port can be set to inputs or outputs on a per line basis, but the command to set
the direction operates on an entire port.

The ports can be read with two distinct port read commands. The state of the lines
that are set as inputs are returned with the read command. The state of any line
that is not set as an input is undetermined and should be ignored.

The ports, when set as outputs, can be written to on a byte-wide basis with two
distinct port write commands. Individual line states may be changed with a set of
commands that mask the port state and affect only user-specified lines.

A set of commands allow for a byte write to one port, while strobing a user-
selected line from another port. The strobe can be either negative-going or
positive-going.

LCD Interface
The U421 is a convenient way to interface a standard Hitachi-type of intelligent LCD
controller to USB. The commands that support communication to the LCD module
are the "standard" LCD commands. Standard commands include writing characters
to the display, and controlling the display.

SPI Master
The U421 is an interface to SPI devices. The firmware on the U401 provides generic
access to read and write SPI devices. The SPI clock rate can be adjusted to 62.5
kHz, 500 kHz, 1 MHz, or 2 MHz. Because additional pins are available as generic
i/o, the U421 can use these lines as slave select lines and address multiple SPI
devices.

guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
http://www.usbmicro.com/index.html

SPI Slave
The U421 can be operated as a SPI slave device. A microcontroller circuit external
to the device can transfer data via SPI into the U421. The data can then be read
from the PC (Win/Linux) or Mac (OSX) with an application. The external processor
could be, for example, a PIC that performs data collection and filtering from an
analog sensor, and transfers readings to the PC (Win/Linux) or Mac (OSX) via the
U421.

Stepper Motor Control
The U421 can be operated as a two channel stepper motor controller. The U401 can
interface to various types of stepper motor driver circuits. The stepper sequence
can be "Wave", "Full", or "Half" with control over direction, speed, and step count.

1-Wire Interface
The U421 can interface with 1-wire devices (temperature sensors, i/o ports, etc)
either on each individual U421 device pin, or on a bus of multiple 1-wire devices.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U451 USB Interface

Online Development Notebook > Index > U451 USB Relay Interface

The USBmicro U451 USB Relay Interface

The U451 is a USB solution that is pre-built, pre-programmed, and pre-tested and
will get you interfacing your PC (Win/Linux) or Mac (OSX) to various devices in very
little time! There is no USB device assembly, no driver development, and no
firmware to write. Demo software applications can be used "right out of the box".

U451 top view.

Features of the U451 USB Relay Interface

LIX. Two Form-C relays rated at 125 volt, 10 amp

LX. Six 500mA switch-to-ground outputs on J4

http://www.usbmicro.com/index.html

LXI. Firmware functions compatible with U401/U421

LXII. U401/U421 Port 0 functions available on J1

LXIII. USB Interface to PC

LXIV. Uses HID Drivers Inherent in OS

LXV. SPI Master and Slave Communication

LXVI. Stepper motor control

LXVII. 1-Wire Communication Interface

LXVIII. Flexible Pin Use

LXIX. Free Compiled Sample Applications

LXX. Visual Basic, C, Delphi Example Code Available

LXXI. Fully Assembled and Tested

LXXII. Great Replacement for Parallel Port Interfacing

LXXIII. PC's USB Power Brought to Device

LXXIV. USB Cable Provided

LXXV. Available in Lead-Free for Europe

Overview of the U451 USB Interface
The U451 provides a simple digital i/o interface for the PC (Win/Linux) or Mac
(OSX) . Two relays, six transistor outputs, and eight i/o lines from the
microcontroller are provided. Commands can be sent to the U451 that change the
eight i/o lines from input to output. I/O lines can be individually selected as inputs
or outputs. The U451 supports commands to read the ports, and if the ports are set
to output, to write to the ports.

The U451 has all of the firmware features of the U401 and U421.

The U451 is an assembled and tested circuit card that is 2.8125 inches (72mm)
long and 1.625 inches (47mm) wide. The U451 has 5 mounting holes.

The U451 interfaces to the PC (Win/Linux) or Mac (OSX) via the USB port. An
application on the PC (Win/Linux) or Mac (OSX) controls the U451. The U451 does
not use any custom drivers, just the drivers that are a part of the operating
system. Custom software can be developed to use the U451, or the applications
that have been created as examples here can also be used.

Uses for the U451 USB Relay Interface
With the U451 you can utilize the USB port on your computer to interface to
various electronic devices, such as: lights, LCD displays, SPI analog and memory
devices, switches, relays, tethered robots, model railroad control, and many
custom circuits. PCB trace widths limit the connections to the relays to about two
amps - this should not be exceeded.

See the ODN U4x1 Application Notes section for examples of using the U451.

Product suitability for your particular purpose/use
We have made every attempt to prepare information about the products we carry
so that you, as a customer, can make an informed decision to purchase or not. It is
entirely at your discretion to make this decision and we do not guarantee that a
product will be suitable for any particular purpose.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

U451 Specs

Online Development Notebook > Index > U451 USB Interface > U451 Specs

U451 Specifications

Board Size: 1.5 inches (38.1 mm) long and 0.75 inches (19.1 mm) wide.

Computer Interface: USB

USB Cable Length: 36 inches (914 mm).

USB Connection type: Removable cable.

USB Power Type: Bus powered, uses the 5V provided by the USB interface.

Specified USB allowed current draw: 100 mA standard, total.

Bandwidth: 800 bytes per second as a HID device.

USB Bus Speed: 1.5 Mbits/s. (Low speed)

USB Driver: HID, part of the operating system.

Device Interface: 2 form-C relays (125V - 10A), 6 darlington outputs (500 mA), 8
CMOS lines selectable as inputs/outputs. Because of trace width, currents should be
limited to 2 amps.

Controller Device: Cypress CY7C63743.

Board Layout:

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
http://www.usbmicro.com/index.html

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

U451 Pinouts

Online Development Notebook > Index > U451 USB Interface > U451 Pinouts

U451 PCB Pin Out

Relay 1 Connector:

Pin
Name

Description

N.C. Normally Closed. When relay 1 is not activated, the common terminal connects to N.C.
Relay 1 is Port B bit 0.

COM Common. This connects to N.C. when relay 1 is not energized, and switches to N.O.
when it is.

N.O. Normally Open. When relay 1 is activated, the common terminal connects to N.O.

Relay 2 Connector:

Pin
Name

Description

N.C. Normally Closed. When relay 2 is not activated, the common terminal connects to N.C.
Relay 1 is Port B bit 1

COM Common. This connects to N.C. when relay 2 is not energized, and switches to N.O.
when it is.

N.O. Normally Open. When relay 2 is activated, the common terminal connects to N.O.

J4 Connector:

Pin
Numbe

Signal

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
http://www.usbmicro.com/index.html

r

1 PB.2 - Port B bit 2 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

2 PB.3 - Port B bit 3 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

3 PB.4 - Port B bit 4 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

4 PB.5 - Port B bit 5 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

5 PB.6 - Port B bit 6 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

6 PB.7 - Port B bit 7 driving a Darlington transistor to ground (a high sent to this port line
pulls the pin to ground)

7 +5V (USB)

8 Ground

9 Common for Darlington. Optionally connect to external voltage.

J1 Connector:

Pin
Numbe
r

Signal

1 PA.0 - Port A bit 0 (stepper motor control)

2 PA.1 - Port A bit 1 (stepper motor control)

3 PA.2 - Port A bit 2 (stepper motor control) (2-wire clock)

4 PA.3 - Port A bit 3 (stepper motor control) (2-wire data)

5 PA.4 - Port A bit 4 (or SPI SS when in slave mode) (stepper motor control)

6 PA.5 - Port A bit 5 (or SPI MOSI) (stepper motor control)

7 PA.6 - Port A bit 6 (or SPI MISO) (stepper motor control)

8 PA.7 - Port A bit 7 (or SPI SCK) (stepper motor control)

9 Ground

10 +5V (USB)

Power Connection:
The +5V available is the power from the computer's USB port. Up to 100mA can be
drawn from this supply to power devices attached to the U451. If more power is
needed, an external supply should be used to power additional circuits. Do not
attach the +5V from an external supply to this pin. The ground connection should
be common to any external power supply ground as well as any target circuits.

Relay Activation:
The two port lines that connect to the relays need to be set to output. PB.0
activates relay 1 when set to high, and PB.1 activates relay 2 when set to a high.

Board Layout:

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Installation

Online Development Notebook > Index > Installation

U4x1 Installation

Hardware
The U401/U421/U451 is assembled and tested. To install the U4x1, no special
driver installation is required. The HID drivers that are a part of Windows are all
that are required.

Physically, to attach the U401/U421/U451 to your PC, simply insert the USB
connector in any available USB port either on the machine, or on a USB hub. The
U4x1 can be plugged into the machine prior to turning the machine on, or even
after the machine has powered up. This USB device, like all USB devices is "hot
plug-able".

After the U4x1 is connected, Windows will detect this new device and automatically
associate the HID driver with this device.

If the HID driver was installed on your hard drive as part of Windows installation, or
if it was installed after attaching another HID device, then the HID driver is
automatically run.

If, however, the HID driver is not located on your hard drive, then Windows will
request the driver from your Windows installation CD. Follow the driver installation
prompts. Once installed, the HID driver will not be requested again.

Please be aware that the devices are sensitive to static. Always use proper static-
sensitive device handling techniques.

Files/Drivers
When using the DLL for programming the U4x1, the DLL can be placed into the
Windows system directory, or in the same directory as executable code.

Refer to the VB examples for information about the VB support files.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/index.html

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

Troubleshooting

Online Development Notebook > Index > Installation > Programming Overview

U4xx Troubleshooting

Enumeration
The U4xx must enumerate properly. That is, the operating system must correctly
detect the device before you can control it. Confirm that the device is part of the
hardware that has been detected. Under windows you would use the Control
Panel / System utility to verify the detection.

Host Hardware Issues
Some USB host chip sets have difficulty with a wide range of USB devices.
Specifically the older VIA chip set may not detect the U4xx. You could remove the
VIA drivers and use the Microsoft-provided drivers. This will help in some HW
configurations. Another alternative is to purchase a USB plug-in card.

The VIA drivers may install an "Enhanced USB Root Hub". Disabling this, but still
allowing "USB Root Hub Companions" may also allow the USB device to be
recognized.

The "SiS" chip sets are also known to have problems detecting a number of USB
devices.

You may wish to look to www.usbman.com to resolve many consumer USB issues.

App Code Verification
Please feel free to use the application example code to confirm the operation of the
U4xx device.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbman.com/
guidnode://4B3BE2D799175E4C55FD84CD86DBAB85A72A246F
http://www.usbmicro.com/index.html

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

Programming Overview

Online Development Notebook > Index > Programming Overview

Programming Overview

The U4xx was developed to operate with the Windows operating system. The U4xx
works with Windows Vista, Windows XP, Windows 98se, Windows 98me, and
Windows 2000. Windows NT, Windows 95, the first release of Windows 98, and any
earlier versions of Windows do not work completely or at all with the U4xx (or any
similar USB device).

The U4xx has been tested with OSX, Linux Red Hat 8.0, and current Ubuntu Linux.

An application program for the U4xx can be written in several different languages
(VB, VC, Delphi, BCB) by accessing Windows API directly or through a DLL. The
application languages include more than just the languages that are sampled in this
document. Any language that can produce a Windows program and call either the
Windows API or a DLL would be candidates for interfacing this USB hardware.

USBm Dynamic Link Library Programming (VB, C, C+
+, Delphi, .NET, RobotBASIC, REALbasic, Java, etc.)
A dynamic link library hides most of the messy interface commands. The DLL
(USBm.dll) provides a function for EACH device operation. Visual Basic can access
the DLL by including an interface file (USBmAPI.bas). Visual C can access the DLL
by including the DLL in the project.

For example, to write E7h to port A use this command:

USBm_WritePortA(device, 0xE7)

The DLL API is described in the USBm DLL Programming section of this document.
Using the DLL is the better choice for interfacing to the USB device on windows.

Raw Device Programming (Linux, Mac OSX, VB
Example)
You can directly communicate with the Windows API to program the USB interface
boards. For VB, the support files (those with a .bas extension) separate the bulk of
the interface details from the main VB application.

The operations that control the USB device are commands that write data to the

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

device and read data from the device. These two function calls provide a way for
commands to be sent to the device, and replies read. The "payload" of the
functions is the "raw" device command.

To write E7h to port A use the command 01-E7-00-00-00-00-00-00. Details of
sending these bytes are covered where Linux and Mac are discussed.

The raw commands are described in each device command as Raw Device
Programming. Use this method of interfacing to the USB device only if your
programming language has no support for using the DLL.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBm DLL Programming

Online Development Notebook > Index > Programming Overview > USBm DLL Programming

USBm Dynamic Link Library
Programming

A dynamic link library for the U4x1 hides most of the messy interface commands.
The DLL (USBm.dll) provides a function for EACH device operation. Visual Basic can
access the DLL by including an interface file (USBmAPI.bas).

For example, to write E7h to port A use this command:

USBm_WritePortA(device, 0xE7)

Encapsulation of USB Commands
The USBm.dll Dynamic Link Library for the USB interface devices captures many of
the messier USB programming details. The DLL can be used with VB, C, Delphi,
.NET or any appropriate Windows programming language. It is much easier and
faster to use the USBmicro dynamic link library to control the USB devices, than to
use direct Windows API commands.

For Visual Basic the file USBmAPI.bas should be included in the project. This file
has all of the declarations that support the functions in the DLL.

Use of DLL
The USBm.dll Dynamic Link Library can be used by any owner of a
U401/U421/U451 without a license charge.

Use of MS VC++
Please see the VC++ interface section for using the USBm.dll Dynamic Link Library
with Visual C++.

Current DLL version
The USBm.dll Dynamic Link Library current numerical version is 61.

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Version 65 - support for firmware 3.35 (2-wire and latching)
Version 61 - support for U451.
Version 60 - stepper count.
Version 56 - strobe byte delay, servo.
Version 52 - library clean up.
Version 42 - support for strobe byte changes.
Version 40 - corrections for MSVC++.
Version 36 - support for 1-wire commands.
Version 34 - support for the stepper command.
Version 30 - support for the U421.
Version 28 - initial public release.

The DLL is included with the application samples and is also located here (all
application files).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://1501DE7C3B704ED6BE3069CE61F5E902345AD009
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip
http://www.usbmicro.com/apps/appfiles.zip

General VB DLL Example

Online Development Notebook > Index > Programming Overview > General VB DLL Example

General Visual Basic Example using
USBm.dll

This example uses VB to interface to the U4xx. The very minimum application
would be to open the USB device and transmit a single command. This example
shows the code that it takes to use USBm.dll to open the U4xx device and initialize
the ports.

VB Declaration
Public Declare Function USBm_About _
 Lib "USBm.dll" _
 (ByVal aboutstring As String) _
 As Integer

The declaration for the file "USBm.dll" is included in the Visual Basic project by
including the file "USBmAPI.bas". This example declaration above will return the
"about" string contained in the DLL. All of the DLL functions are declared in
"USBmAPI.bas".

VB Example
 USBm_About strng
 frmMain.lstInfo.AddItem "About the USBm DLL: " & strng

This code fragment shows that strng is loaded with the "about" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"about" information will be made visible to the user.

Dim w As Integer
 ' Search for device(s)
 w = USBm_FindDevices

 ' Test return value
 If (w) Then
 frmMain.lstInfo.AddItem (" Devices found.")
 Else
 frmMain.lstInfo.AddItem (" Devices not found.")

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 End If

This code fragment shows the call needed in order to find the devices on the bus.
This DLL function needs to be called before any other device communication.
Assuming that the form called "Main" exists with a text box called "Info", the
found/not found message will be made visible to the user.

 USBm_InitPorts (0)

This code fragment initializes the ports of device 0.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

General C# DLL Info

Online Development Notebook > Index > Programming Overview > General C# DLL Info

General C#/.NET Information using
USBm.dll

This example uses C# to interface to the U4xx. The very minimum application
would be to open the USB device and transmit a single command. This example
shows the code that it takes to use USBm.dll to open the U4xx device and initialize
the ports.

The Class
// needed to import the .dll
using System.Runtime.InteropServices;

 public class USBm
 {
 public static byte BitA0 = 0x00;
 public static byte BitA1 = 0x01;
 public static byte BitA2 = 0x02;
 public static byte BitA3 = 0x03;
 public static byte BitA4 = 0x04;
 public static byte BitA5 = 0x05;
 public static byte BitA6 = 0x06;
 public static byte BitA7 = 0x07;
 public static byte BitB0 = 0x08;
 public static byte BitB1 = 0x09;
 public static byte BitB2 = 0x0A;
 public static byte BitB3 = 0x0B;
 public static byte BitB4 = 0x0C;
 public static byte BitB5 = 0x0D;
 public static byte BitB6 = 0x0E;
 public static byte BitB7 = 0x0F;

// USBm.dll - C# pInvoke examples
// "Commands"
// [DllImport("USBm.dll", EntryPoint = "USBm_FindDevices",
CharSet = CharSet.Auto)]
 [DllImport("USBm.dll")]
 public static extern bool USBm_FindDevices();
 [DllImport("USBm.dll")]

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 public static extern int USBm_NumberOfDevices();
 [DllImport("USBm.dll")]
 public static extern bool USBm_DeviceValid(int Device);
 [DllImport("USBm.dll")]
 public static extern bool USBm_About(StringBuilder About);
 [DllImport("USBm.dll")]
 public static extern bool USBm_Version(StringBuilder Version);
 [DllImport("USBm.dll")]
 public static extern bool USBm_Copyright(StringBuilder
Copyright);
 [DllImport("USBm.dll")]
 public static extern bool USBm_DeviceMfr(int Device,
StringBuilder Mfr);
 [DllImport("USBm.dll")]
 public static extern bool USBm_DeviceProd(int Device,
StringBuilder Prod);
 [DllImport("USBm.dll")]
 public static extern int USBm_DeviceFirmwareVer(int Device);
 [DllImport("USBm.dll")]
 public static extern bool USBm_DeviceSer(int Device,
StringBuilder dSer);
 [DllImport("USBm.dll")]
 public static extern int USBm_DeviceDID(int Device);
 [DllImport("USBm.dll")]
 public static extern int USBm_DevicePID(int Device);
 [DllImport("USBm.dll")]
 public static extern int USBm_DeviceVID(int Device);
 [DllImport("USBm.dll")]
 public static extern bool USBm_DebugString(StringBuilder
DBug);
 [DllImport("USBm.dll")]
 public static extern bool USBm_RecentError(StringBuilder
rError);
 [DllImport("USBm.dll")]
 public static extern bool USBm_ClearRecentError();
 [DllImport("USBm.dll")]
 public static extern bool USBm_SetReadTimeout(uint TimeOut);
 [DllImport("USBm.dll")]
 public static extern bool USBm_ReadDevice(int Device, byte[]
inBuf);
 [DllImport("USBm.dll")]
 public static extern bool USBm_WriteDevice(int Device, byte[]
outBuf);
 [DllImport("USBm.dll")]
 public static extern bool USBm_CloseDevice(int Device);
 }

Example of function calling
// Test USBm device attached

 if (!USBm.USBm_FindDevices())
 {
 MessageBox.Show(string.Format("No Device Present"), "USBm
Devices", MessageBoxButtons.OK, MessageBoxIcon.Information);
 return;
 } // implied else

//Walk the USBm.dll functions

 // some containers
 StringBuilder sb = new StringBuilder(200);
 bool result = false; // return values

 // .DLL FindDevices returns the number of devices
 // public static extern bool USBm_FindDevices();
 result = USBm.USBm_FindDevices();

 // return the number of devices
 // public static extern int USBm_NumberOfDevices();
 int TotalDevices = USBm.USBm_NumberOfDevices();
 int Device = TotalDevices -1; // only One device is ever attached
so ...

 // .DLL About info
 // public static extern bool USBm_About(StringBuilder about);
 result = USBm.USBm_About(sb);

 // .DLL Version info
 // public static extern bool USBm_Version(StringBuilder Version);
 result = USBm.USBm_Version(sb);

 // .DLL Copyright info
 // public static extern bool USBm_Copyright(StringBuilder
Copyright);
 result = USBm.USBm_Copyright(sb);

 // Device Valid
 //public static extern bool USBm_DeviceValid(int Device);
 result = USBm.USBm_DeviceValid(Device);

 // Device Manufacturer
 //public static extern bool USBm_DeviceMfr(int Device,
StringBuilder Mfr);
 result = USBm.USBm_DeviceMfr(Device, sb);

 // Device Product String
 // public static extern bool USBm_DeviceProd(int Device,
StringBuilder Prod);
 result = USBm.USBm_DeviceProd(Device, sb);

 // Device Firmware Version
 // public static extern int USBm_DeviceFirmwareVer(int Device);

 int FirmVer = USBm.USBm_DeviceFirmwareVer(Device);

 // Device SerialNumber []
 // public static extern bool USBm_DeviceSer(int Device,
StringBuilder dSer);
 result = USBm.USBm_DeviceSer(Device, sb);

 // Device DiD
 // public static extern int USBm_DeviceDID(int Device);
 int DID = USBm.USBm_DeviceDID(Device);

 // Device PiD
 // public static extern int USBm_DevicePID(int Device);
 int PID = USBm.USBm_DevicePID(Device);

 // Device ViD
 // public static extern int USBm_DeviceVID(int Device);
 int VID = USBm.USBm_DeviceVID(Device);

 // Device Debug String
 // public static extern int USBm_DebugString(int Device);
 result = USBm.USBm_DebugString(sb);

 // Device Recent Error - always returns true
 // public static extern bool USBm_RecentError(void);
 result = USBm.USBm_RecentError(sb);

 // Device Clear Recent Error
 // public static extern bool USBm_ClearRecentError(void);
 result = USBm.USBm_ClearRecentError();

 // Device SetReadTimeout [sixteen-bit millisecond value]
 // public static extern bool USBm_SetReadTimeout(uint TimeOut);
 uint tOUT = 3000;
 result = USBm.USBm_SetReadTimeout(tOUT);

 // Device WriteDevice [8 byte to write (device raw commands)]
 // public static extern bool USBm_WriteDevice(int Device, ref
int[] inBuf);
 byte[] OutBuf = { 0, 21, 3, 65, 8, 17, 60, 0 };
 result = USBm.USBm_WriteDevice(Device, OutBuf);

 // Device ReadDevice []
 // public static extern bool USBm_ReadDevice(int Device, array);
 byte[] InBuf = { 0, 0, 0, 0, 0, 0, 0, 0 };
 result = USBm.USBm_ReadDevice(Device, InBuf);

 // Device CloseDevice []
 // public static extern bool USBm_CloseDevice(int Device);
 result = USBm.USBm_CloseDevice(Device);

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

RobotBASIC

Online Development Notebook > Index > Programming Overview > RobotBASIC

RobotBASIC

RobotBASIC from RobotBASIC.org supports the U4xx (versions greater than 3.2.0)
through the USBm.dll file. RobotBASIC can be used as a BASIC language for
simulating robot movement and sensing. It can also be used as a general-purpose
utility language for interfacing with the U4xx device. And - best of all - RobotBASIC
is FREE!

Commands that control the U4x1 are built in to RobotBASIC. These functions are
listed below. These functions mirror the commands that would be called in the DLL
(from VB or C, for example). Some of the DLL commands are combined into a
single RobotBASIC function.

In the following list ne_ means numerical expression, se_ means string expression.

DLL Specific Functions
usbm_DllSpecs()

Returns a string that contains information about the DLL. There are four sections
separated by the | character. You can use the Extract() function to extract each
section separately if desired. The sections are:

About, Copyright, and Version Date, Version Number

usbm_ErrorSpecs()

Returns a string that contains information about the recent error string and debug
string if any in the DLL. There are two sections separated by the | character. You
can use the Extract() function to extract each section separately if desired. The
sections are:

Recent Error, DEbug String

usbm_ClearRecentError()

Always returns -1. The function clears any recent error data in the DLL.

usbm_FindDevices()

Returns -1 (true) if there are U4x1 devices connected to the PC. Returns 0 (false)
otherwise. You should call this function before you do anything with devices.

http://www.robotbasic.org/
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

usbm_NumberOfDevices()

Returns the number of U4x1 devices connected to the PC. 0 means there are no
devices connected.

usbm_SetReadTimeout(ne_Time)

Returns true if successful, false otherwise. This function sets the timeout for all the
read commands. The value should be in milliseconds. The default is 1000 msecs =
1 sec.

Device Information Functions
usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
separated by the | character. You can use the Extract() function to extract each
section separately if desired. The sections are:

 DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version.

usbm_DeviceValid(ne_DeviceNumber)

Returns true if the device number refers to a connected and active device. False
otherwise.

usbm_CloseDevice(ne_DeviceNumber)

Returns true if the device was successfully closed. False otherwise.

Device I/O Functions
usbm_DeviceCmd(ne_DeviceNumber,se_Data)

Returns a string that contains the results of the response to the command specified
in the se_Data string. The data string passed is a set of 8 bytes. The first byte
specifies the command code and the next 7 bytes are any byte data required by the
command. The returned string contains the first byte as the command number
(again) and then the next 7 bytes are any data returned by the command. Not all
the bytes may have significance in either the passed string or the returned string.

The passed string will be truncated to 8 bytes if it is longer. It can be shorter if not
all the byte positions are required.

Use ArraStr() function to extract the byte values from the string. If you wish to
print the data as hexadecimal values then use the Hex() function.

When creating the string of byte values use the Char(desired byte numeric value)
to convert the byte numerical value to a character so that it can be added to the
string.

usbm_InitPorts(ne_DeviceNumber)

Returns true if successful, false otherwise. This function resets the A and B ports as
Input Ports, which is the default state upon connecting the device to the PC.

usbm_DirectionA(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)

usbm_DirectionB(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)

Returns true if successful, false otherwise. This function sets the direction of each
specific pin in the port. A 1 in the pin position means output, a 0 is input. The
format byte should contain a 1 for each pin's position if it is output. If it is input you
can have a 1 if you want an input pin with a pull up resistor, a 0 if you want the pin
to have no pull up resistor.

usbm_WriteA(ne_DeviceNumber,ne_ByteValue)

usbm_WriteB(ne_DeviceNumber,ne_ByteValue)

Returns true if successful, false otherwise. The byte value is written to Port A/B.

usbm_ReadA(ne_DeviceNumber)

usbm_ReadB(ne_DeviceNumber)

Returns the byte value representing the states of the pins on Port A/B. The value
returned is not a valid value if the device is not a validly active device.

usbm_SetBit(ne_DeviceNumber,ne_PinNumber)

usbm_ResetBit(ne_DeviceNumber,ne_PinNumber)

Returns true if successful, false otherwise. This function makes high/low a
particular pin on any of the ports. The pin number is 0 for A0 1 for A1...7 for A7...8
for B0,15 for B7.

usbm_WriteABit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)

usbm_WriteBBit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)

Returns true if successful, false otherwise. This function reads the current status of
the pins in the A/B port and then ands the value with the anding mask, then the
new value is ored with the oring mask, then the result is written to port A/B. Note:
you can also use the ReadA/B() function then manipulate the byte returned using
RB functions or operators and then use Write/AB() to write the result to the port.
This performs the same action.

usbm_InitLCD(ne_DeviceNumber,ne_Sel, ne_Port)

Returns true if successfull, false otherwise. It specifies the port to use for the data
port and the pins to use for the R/W, RS, and E lines for controlling an LCD.

usbm_LCDCmd(ne_DeviceNumber,ne_CommandByte)

Returns true if successfull, false otherwise. Sends a command code to the LCD.

usbm_LCDData(ne_DeviceNumber,ne_DataByte)

Returns true if successfull, false otherwise. Sends a data byte to the LCD.

usbm_Reset1Wire(ne_DeviceNumber,ne_Specs)

Returns the status of any devices on the 1wire line. Returns 0 if any device
responded and 1 if none did. This function sets up the 1wire line to be used.

usbm_Write1Wire(ne_DeviceNumber,ne_Data)

Returns true if successfull, false otherwise. Writes a byte to the 1wire device.

usbm_Read1Wire(ne_DeviceNumber)

Returns a byte value that is read from the 1wire device.

usbm_Write1WireBit(ne_DeviceNumber,ne_BitValue)

Returns true if successfull, false otherwise. Writes a 0 or 1 to the 1wire device.

usbm_Read1WireBit(ne_DeviceNumber)

Returns a bit value that is read from the 1wire device.

usbm_InitSPI(ne_DeviceNumber,ne_Specs)

Returns true if successfull, false otherwise. It sets the attributes of the SPI system.

usbm_SPISlaveRead(ne_DeviceNumber)

Returns a string of byte data from the Slave buffer (maximum 6 bytes). You can
use the ArrayStr() function to extract the individual bytes.

usbm_SPISlaveWrite(ne_DeviceNumber,se_DataBytes)

Returns true if successful, false otherwise. Writes 1 to 6 bytes to the SPI slave
buffer. The length of the data string determines the number of bytes written. Use
Char() to create the data string.

usbm_SPIMaster(ne_DeviceNumber,se_DataBytes)

Returns a string of byte values inputted from the SPI master after it has read the
corresponding number of bytes from the data string. Use ArrayStr() to extract the
byte values and Char() to create the data string.

usbm_Stepper(ne_DeviceNumber,se_DataSpecs)

Returns true if successful, false otherwise. The byte data string specifies the
channel and so forth.

usbm_StrobeWrite(ne_DeviceNumber,se_ByteData)

Returns true if successful, false otherwise. Writes a byte to a port based on a
strobing line and timing. the byte data string specifies the setup and so forth.

usbm_StrobeRead(ne_DeviceNumber,se_ByteData)

Returns a byte value of data read from a port based on a strobing line and timing.
the byte data string specifies the setup and so forth.

usbm_StrobeWrites(ne_DeviceNumber,se_ByteData)

Returns true if successful, false otherwise. Writes multiple bytes (1 to 6) to a port
based on a strobing line and timing. the byte data string specifies the setup and the
data to be written.

usbm_StrobeReads(ne_DeviceNumber,se_ByteData)

Returns a string of byte data read from a port based on a strobing line and timing.
the byte data string specifies the setup and so forth.

Simple code example for output
The very minimum application would be to use RobotBASIC to open the USB device
and transmit a single command or two. This example shows the code that it takes

to use RobotBASIC to open the U401/U421 device, initialize the ports, and output a
value.

MainProgram:

 //---------------------------
 // Discover the devices
 //---------------------------

 n = usbm_finddevices()

 // Set dir of port A of dev 0 to out
 n = usbm_DirectionA(0, 255, 255)

 n = usbm_WriteA(0, 255)

End

Find serial numbers of all attached U4x1 devices
A more sophisticated example shows what it takes to use RobotBASIC to open all
attached U4x1 devices and get their serial numbers.

//--

//
// Main Program
//
//--

MainProgram:

 // Allow screen double buffering
 Flip On

 //---------------------------
 // Get information for DLL
 //---------------------------

 xyText 5, 20, "USBmicro DLL Data", "Verdana", 15, fs_Bold|
fs_Underlined

 m = usbm_DLLSpecs()

 //---------------------------
 // Display discovered information
 //---------------------------

 // About this DLL
 xyText 25, 60, "About:" + Extract(m,"|",1), "Verdana", 10

 // DLL Version and Date
 xyText 25, 80, "DLL Version: " + Extract(m,"|",4), "Verdana", 10
 xyText 25, 100, "DLL Version date: " + Extract(m,"|",3),
"Verdana", 10

 //---------------------------
 // Get information about
 // connected devices.
 //---------------------------

 // Discover the devices
 n = usbm_finddevices()

 // Count devices
 n = usbm_numberofdevices()
 m = ""
 if n != 1 then m = "s"
 xyText 5, 150, "Found " + n + " Device" + m, "Verdana", 10

 // Display devices
 xyText 5, 180, "Device", "Verdana", 10, fs_Bold|fs_Underlined
 xyText 80, 180, "Made By", "Verdana", 10, fs_Bold|fs_Underlined
 xyText 220, 180, "Type", "Verdana", 10, fs_Bold|fs_Underlined
 xyText 300, 180, "Serial Number", "Verdana", 10, fs_Bold|
fs_Underlined

 // Loop through all of the devices
 for loop = 1 to n

 // Get device info
 m = usbm_DeviceSpecs(loop - 1)

 // Print device info
 xyText 5, 190 + (20 * loop), loop, "Verdana", 10
 xyText 80, 190 + (20 * loop), extract(m,"|",4), "Verdana", 10
 xyText 220, 190 + (20 * loop), extract(m,"|",5), "Verdana", 10
 xyText 300, 190 + (20 * loop), extract(m,"|",6), "Verdana", 10

 next loop

 // Show buffered screen
 flip

 Waitkey " ", n

End

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

MSVC++ Example

Online Development Notebook > Index > Programming Overview > MSVC++ Example

MSVC++ Example using USBm.dll

This example uses MSVC++ to interface to the U4x1. The very minimum
application would be to open the USB device and transmit a single command. This
example shows the code that it takes to use USBm.dll to open the U401/U421
device and initialize the ports.

VC++ Dynamic Loading
#include "stdafx.h"
#include <iostream>
#include <windows.h>

using namespace std;

HINSTANCE hDll = 0;

typedef int (__stdcall *USBm_FindDevices_type) ();
typedef int (__stdcall *USBm_DeviceVID_type) (unsigned char device);
typedef int (__stdcall *USBm_DevicePID_type) (unsigned char device);
typedef int (__stdcall *USBm_DeviceDID_type) (unsigned char device);
typedef int (__stdcall *USBm_DirectionA_type) (unsigned char device,
int);
typedef int (__stdcall *USBm_WriteA_type) (unsigned char device,
int);

USBm_FindDevices_type USBm_FindDevices;
USBm_DeviceVID_type USBm_DeviceVID;
USBm_DevicePID_type USBm_DevicePID;
USBm_DeviceDID_type USBm_DeviceDID;
USBm_WDirection A_type USBm_DirectionA;
USBm_WriteA_type USBm_WriteA;

This is the type definition setup for dynamic DLL loading.

The main function makes use of the "LoadLibrary()" call to gain access to the DLL.

int main()
{

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 int result;

 hDll = LoadLibrary("USBm.dll");

 USBm_FindDevices = (USBm_FindDevices_type)GetProcAddress(hDll,
"USBm_FindDevices");
 USBm_DeviceVID = (USBm_DeviceVID_type)GetProcAddress(hDll,
"USBm_DeviceVID");
 USBm_DevicePID = (USBm_DevicePID_type)GetProcAddress(hDll,
"USBm_DevicePID");
 USBm_DeviceDID = (USBm_DeviceDID_type)GetProcAddress(hDll,
"USBm_DeviceDID");
 USBm_DirectionA = (USBm_DirectionA_type)GetProcAddress(hDll,
"USBm_DirectionA");
 USBm_WriteA = (USBm_WriteA_type)GetProcAddress(hDll,
"USBm_WriteA");

 result = USBm_FindDevices();

 cout << "USBm_DeviceVID(0) = " << USBm_DeviceVID(0) << endl;
 cout << "USBm_DevicePID(0) = " << USBm_DevicePID(0) << endl;
 cout << "USBm_DeviceDID(0) = " << USBm_DeviceDID(0) << endl;

 USBm_DirectionA(0, 0xFF, 0xFF);

 USBm_WriteA(0, 0x55);

 FreeLibrary(hDll);

 return 0;

}

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Delphi Interfacing

Online Development Notebook > Index > Programming Overview > Delphi Interfacing

Delphi Interfacing using USBm.dll

Delphi can be used to interface to the U4x1 devices. The interface file for the
USBm.dll is included below.

A very special thanks to Mike McWhinney (elja, Incorporated) for providing this
Delphi Interface (all application files).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

LabVIEW Interfacing

Online Development Notebook > Index > Programming Overview > LabVIEW Interfacing

LabView Interfacing using USBm.dll

LabView can be used to interface to the U4x1 devices. LabView uses the USBm.dll
DLL.

There are updated documents on the LabView (National Instruments) web site that
describe how a dll is interfaced to LabView. Look for a document titled: "Using
External Code in LabVIEW".

A very special thanks to Amadeo Vergés for creating this USBmicro LabVIEW
Driver: (all application files).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Raw Device Programming

Online Development Notebook > Index > Raw Device Programming

Raw Device Programming

(Note: The easiest way to interface to the device in Windows is through the USBm
DLL Programming method.)

You can directly communicate with the Windows API using the device raw
commands to program the USB interface boards. The raw commands are described
here. Use this method of interfacing to the USB device only if your programming
language has no support for using the DLL.

For VB the support files (those with a .bas extension) separate the bulk of the
interface details from the main VB application.

The operations that control the USB device are commands that write data to the
device and read data from the device. These two function calls provide a way for
commands to be sent to the device, and replies read. The "payload" of the
functions is the "raw" device command.

To write E7h to port A use the command 01-E7-00-00-00-00-00-00

Visual Basic Programming
The sample programs that are a part of the ODN have been written in Visual Basic
version 6.0. A group of files, the "VBLIB" are used to hide the complexity of
interfacing to the U4xx. These files are adapted from the files created by John
Hyde, author of "USB Design by Example" and a DLL from Dan Appleman, author of
"Visual Basic Programmer's guide to the Win32 API". The files of the VB library and
the DLL can be downloaded (all application files) from this site.

By using these visual basic files developed by John, anyone exploring how the USB
HID interface is programmed can use John's excellent book as a guide. The book
explains in detail about USB devices and the HID interface to the PC. The U4x1
examples use the methods developed by John, but do not go into any detail.

The basic files are:

osinterface.bas

hidinterface.bas

miscfunc.bas

The osinterface.bas file defines all of the API routines and data structures

http://www.usbmicro.com/apps/appfiles.zip
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

necessary to communicate with the USB subsystem. The hidinterface.bas file
contains the helper functions for opening, closing, writing to, and reading from the
U4x1. Miscfunc.bas has some generic hex, string, and ASCII helper functions.

The function "OpenUSBdevice" opens the first device that matches the data in the
function's parameters. The parameters are:

NameOfDevice$ - The device product name "U401".

ManufactOfDevice$ - The device manufacturer name "USBmicro".

VIDOfDevice - The Vendor Identification - 0DE7

PIDOfDevice - The Product Identification - 0191

DIDOfDevice - The Device ID (or device version) - 0100

SerNumOfDevice$ - The serial number of the device (specific to the purchased
U401)

Unused parameters should be 0 or the null string, as appropriate.

The "ReadUSBdevice" function and the 'WriteUSBdevice" function transfer data to
and from the open USB device.

The "CloseUSBdevice" function closes the connection to the U4xx.

DLL Support for Examples
To operate the samples, a library file is necessary.

The DLL file is:

apigid32.dll

The DLL should be copied to the Windows system directory. (Obtained as part of
the VBLIB download, above.)

The support files are included with the application samples and also located here
(all application files) .

Raw Command Summary
The Command Table below summarizes all of the allowed U4xx commands. The
Command Name is for easy reference to the command, it is the command number
given below in hexadecimal format that is used in the first byte of the command
string for the command. The individual command pages that follow this summary
give detailed information on the format and use of these commands.

Empty entries in the table indicate unused command values. These values are
reserved.

The support files are included with the application samples and also located here
(all application files).

Command
Name

Description

InitPorts 00 Initialize both 8 bit ports as passive inputs

guidnode://7EF66C0E40ABD385841C8B0B591FC9690A22811D
http://www.usbmicro.com/apps/appfiles.zip
file:///C:/Users/Owner/AppData/Local/Temp/.
http://www.usbmicro.com/apps/appfiles.zip

WriteA 01 Write to port A

WriteB 02 Write to port B

WriteABit 03 Write masked values to port A

WriteBBit 04 Write masked values to port B

ReadA 05 Read port A

ReadB 06 Read port B

SetBit 07 Set a single line/bit high

ResetBit 08 Reset a single line/bit low

DirectionA 09 Port A direction

DirectionB 0A Port B direction

StrobeWrite2 0B Strobe Write

StrobeRead2 0C Strobe Read

StrobeWrites 0DMulti-byte Strobe Write

StrobeReads 0E Multi-byte Strobe Read

ReadLatchesCm
d

0F

InitLCD 10 Init LCD

LCDCmd 11 Write LCD command

LCDData 12 Write LCD data

13

InitSPI 14 Init SPI pins and SPI control attributes

SPIMaster 15 Send/Receive SPI data as a master

SPISlaveWrite 16 Write SPI slave message

SPISlaveRead 17 Read SPI slave message

guidnode://96AB2D059DC152A10ADA45EC5CD98002413D3077
guidnode://8E9DA893572AC75D763E9C859481295FF7F373F7
guidnode://5AABA1A0367DD3F2D583A88D5A590A5B45E1ED42
guidnode://E7CE4B334EBF6E403EB6F5CD210A07B84AC8D3EB
guidnode://73C79D78AEA28ACF42EB035EE2712A695ED1C662
guidnode://D48A3165C8279D632466B4B4EFA81048504797CA
guidnode://B18FBA3BE65EB6084CB09ECF3294ECFA4602C60F
guidnode://D93B52AEF3D95F9E8524CFBDB869E6FFDA71A243
guidnode://77E5E7C09C2DCD60F092DC5C0302300F50B99E8F
guidnode://640E08D831EE042603C86F9CB3423F02F2D133B2
guidnode://03741A88180E1B76F3741DCCEA9674656ED805C6
guidnode://D24E4F35BB45EE9FEB637F4F9274B00C22CC8A9E
guidnode://3218627C5C37895F561D921350D58C06B9375694
guidnode://202C15B03DE302548887D79E90865C877BA2E272
guidnode://45C1DAF372FC5C964379E0F9BDAB1595016A295D
guidnode://7EE143213BB07C45527C2C565598DE8D1C9DA4E1
guidnode://356CE7B95D3A3C9BD0F403A96D9C5199039F3F8F
guidnode://EB8A1E35BD1FFD4154DF20F9814C1B02C3D6BC18
guidnode://320129B6E551C260457DCEF7003F17A02345466F
guidnode://8F4326E75B0EB903839DD3D5AD313A9E91594D56
guidnode://F1BD62846B70D85E199AC15A6E1ADAEB55D6D926

Wire2ControlC
md

18

Wire2Data 19

1A

1B

Stepper 1C Control two stepper motor digital channels

Reset1Wire 1DSelect pin for 1-wire bus and send reset command to the bus.

Write1WireBit 1E Write to 1-wire bus

Read1WireBit 1F Read from 1-wire bus

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://DE6A7779DA422C17C2E9961A6406746B81D85BC9
guidnode://DD82ABFF388BAC4651636BB2AB8004D7D2490A0C
guidnode://DE3478F0E71ECB053FACA69F6D3A1F3218CA5181
guidnode://50235FEDBC62BF5F76EDDC501CB267E4F4ED54E9

General VB Raw Example

Online Development Notebook > Index > Programming Overview > General VB Raw Example

General VB Example

This example uses VB to initialize the U4x1. The very minimum application would
be to open the USB device and transmit a single command. This example shows
the code that it takes to open the U4x1 device and initialize the ports. The VBLIB
files need to be included as part of this project.

The communication with the U4xx is done by transferring a group of eight bytes via
the WriteUSBdevice call of the U4x1 VB library. Eight bytes are returned from the
device and read via the ReadUSBdevice U4x1 VB call. These bytes are located in
two arrays that are defined below.

Option Explicit
Dim OutBuffer(10) As Byte
Dim InBuffer(10) As Byte

When the form for this project is loaded, a call to OpenUSBdevice with the
appropriate parameters returns true if the device has been detected.

The OpenUSBdevice parameters are used to find the device. A single parameter (in
this example the string "U401") will open the first device located that matches that
string. Multiple parameters allow devices to be opened via manufacturer name,
VID, etc.

When a single parameter is used, the other parameters should be either 0, or a null
string, as in the example.

Multiple parameters are used when device selection refinement is necessary, such
as when multiple U4x1 devices are used on a single machine. In that case, the
serial number string should be used to refine the selection.

' Form load
' When the form is loaded at startup, find the hardware.
' Indicate status in "DeviceStatus" box.

Private Sub Form_Load()

 If OpenUSBdevice("U401", "", 0, 0, 0, "") Then
 DeviceStatus.Caption = "USB Device Found"
 Else
 DeviceStatus.Caption = "USB Device Not Found"
 End If

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

End Sub

Calling the function WriteReadUSB moves the eight command bytes of the array
"OutBuffer" to the device and fills "InBuffer" with the 8 bytes sent from the U4xx.

' USB Transfer

Public Sub WriteReadUSB()

 Call WriteUSBdevice(AddressFor(OutBuffer(0)), 8)
 DoEvents
 Call ReadUSBdevice(AddressFor(InBuffer(0)), 8)

End Sub

The single button on the form of this application example transmits the InitPorts
Command string of 00-00-00-00-00-00-00-00 to the U4xx.

' Button: Cmd

' Send a command to the device

Private Sub Cmd_Click()

 OutBuffer(0) = &H0
 OutBuffer(1) = &H0
 OutBuffer(2) = &H0
 OutBuffer(3) = &H0
 OutBuffer(4) = &H0
 OutBuffer(5) = &H0
 OutBuffer(6) = &H0
 OutBuffer(7) = &H0

 Call WriteReadUSB

End Sub

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

General Linux Info

Online Development Notebook > Index > Programming Overview > General Linux Info

General Linux Info

This example uses LibUSB to interface to the U4x1.

Example Code
/* uses libusb version 0.1.10a found at http://libusb.sourceforge.net
*/

#include "libusb/usb.h"

#define VENDOR_ID 0x0DE7
#define PRODUCT_ID 0x0191

#define CANT_SEND -1
#define CANT_READ -2

static struct usb_device *find_U401(struct usb_bus *bus)
 {

 struct usb_device *dev;

 // look through all busses
 for (; bus; bus = bus->next)
 {
 // look at every device
 for (dev = bus->devices; dev; dev = dev->next)
 {
 // match to known IDs
 if (dev->descriptor.idVendor == VENDOR_ID && dev-
>descriptor.idProduct == PRODUCT_ID)
 {
 return dev;
 }
 }
 }
 return NULL;
}

http://libusb.sourceforge.net/
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

void buffer_set(char *buf, int a, int b, int c, int d, int e, int f,
int g, int h)
{
 buf[0] = a;
 buf[1] = b;
 buf[2] = c;
 buf[3] = d;
 buf[4] = e;
 buf[5] = f;
 buf[6] = g;
 buf[7] = h;
}

int send_command(struct usb_dev_handle *handle, char *command, int
comLen, int resLen)
{

 int ret = usb_control_msg(handle, 0x21, 9, 0x0200, 0, command,
comLen, 5000);

 // check that send was successful
 if (ret != comLen)
 return CANT_SEND;

 // does the command expect a result?
 if (resLen > 0)
 {
 ret = usb_bulk_read(handle, 0x81, command, resLen, 5000);
 if (ret != resLen)
 return CANT_READ;

 }

 return ret;

}

int main()
{

 int busses, devices, ret, portA, portB;
 struct usb_bus *bus_list;
 struct usb_device *dev = NULL;
 struct usb_dev_handle *handle;

 char buffer[8];

 // initialize the usb system
 usb_init();
 busses = usb_find_busses(); // update info on busses
 devices = usb_find_devices(); // update info on devices
 bus_list = usb_get_busses(); // get actual bus objects

 if ((dev = find_U401(bus_list)) == NULL)
 return -1; // failure to find

 if ((handle = usb_open(dev)) == NULL ||
usb_claim_interface(handle, 0))
 return -1; // failure to open

 if (usb_set_configuration(handle, 1))
 return -1;

 // initialize the ports (A & B) as input
 buffer_set(buffer, 0, 0, 0, 0, 0, 0, 0, 0);
 ret = send_command(handle, buffer, 8, 0);

 if (ret != 8)
 return -1;

 // read port A
 buffer_set(buffer, 0x05, 0, 0, 0, 0, 0, 0, 0);
 ret = send_command(handle, buffer, 8, 8);

 if (ret != 8)
 return -1; // report error

 // print out port A value
 printf("Port A = %d\n", buffer[1] & 0xFF);

 // read port B
 buffer_set(buffer, 0x06, 0, 0, 0, 0, 0, 0, 0);
 ret = send_command(handle, buffer, 8, 8);

 if (ret != 8)
 return -1; // report error

 // print out port B value
 printf("Port B = %d\n", buffer[1] & 0xFF);

 if (usb_release_interface(handle, 0) || usb_close(handle))
 return -1; // report error

 return 0; // success
}

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

General Mac OSX Info

Online Development Notebook > Index > Programming Overview > General Mac OSX Info

General Mac OSX Info

Mac OSX Example Xcode is included in the application files. REALBasic can also be
used for programming on the Mac. See Download Files.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

DLL Commands

Online Development Notebook > Index > Programming Overview> DLL Commands

DLL Commands

The DLL Command Table below summarizes all of the allowed USBm.dll commands
that don't deal with device manipulation. The individual command pages that follow
this summary give detailed information on the format and use of these commands.

Command
Name

Description

About Return a string with information about the DLL.

ClearRecentErr
or

Clear the error string.

CloseDevice Close access to USB device. Valid "device" from 1 to the maximum number of
devices found. Any other number results in a FALSE return.

Copyright Return a string with DLL copyright information.

DebugString Return a string with debug information.

DeviceDID Return Device ID from USB device. Valid "device" from 1 to the maximum
number of devices found. Any other number results in a FALSE return.

DeviceFirmware
Ver

Return Device Firmware Version from USB device. Valid "device" from 1 to the
maximum number of devices found. Any other number results in a FALSE
return.

DeviceMfr Return Manufacturer string from USB device. Valid "device" from 1 to the
maximum number of devices found. Any other number results in a FALSE
return.

DevicePID Return Product ID from USB device. Valid "device" from 1 to the maximum
number of devices found. Any other number results in a FALSE return.

DeviceProd Return Product string from USB device. Valid "device" from 1 to the maximum
number of devices found. Any other number results in a FALSE return.

guidnode://20735720B593B95938C33E9E1ACB74DBE9E762F1
guidnode://710D73220575F13163F016D6B31586494CFB7F88
guidnode://88567D94859CFBAC3587933D36B981B8DFDFBA0A
guidnode://EB79FA29B87EB936DCFCCD46301372F8186ABEB5
guidnode://EB79FA29B87EB936DCFCCD46301372F8186ABEB5
guidnode://80DE0218CF41F23C6BE649BC3300AB2B7D4EB18C
guidnode://6719D0B17128C30E3B2DD9829F020A93D40F1E3A
guidnode://FC56C8FB92A442624331A6FB7ED645560ABBDD8D
guidnode://CB96F2F8C78E71049D2E1CBABD7FFA398761CE8C
guidnode://C9EC3296C362572D410D768125CF3D11623455BF
guidnode://C9EC3296C362572D410D768125CF3D11623455BF
guidnode://CD77FCE93A6ED71F05A6D33F2DF2E415675AC581
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

DeviceSer Return Serial number string from USB device. Valid "device" from 1 to the
maximum number of devices found. Any other number results in a FALSE
return.

DeviceValid Return indication of validity from USB device. Valid "device" from 1 to the
maximum number of devices found. Any other number results in a FALSE
return.

DeviceVID Return Vendor ID from USB device. Valid "device" from 1 to the maximum
number of devices found. Any other number results in a FALSE return.

FindDevices Scan all of the HID devices available on the bus. If a device qualifies as a
U4xx, then place the device into the internal data structure for U4xx devices.

NumberOfDevic
es

Return the number of valid devices on USB bus. (0 to 20)

ReadDevice Read raw bytes from device. Valid "device" from 1 to the maximum number of
devices found. Any other number results in a FALSE return.

RecentError Return a string with error information.

SetReadTimeou
t

Set value for read timeout.

Version Return the version of the DLL.

WriteDevice Write raw bytes to device. Valid "device" from 1 to the maximum number of
devices found. Any other number results in a FALSE return. FALSE return.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://B5B778250DC7964628C924331943D2D986DF5F88
guidnode://F2A3C276BF8233DE7CACABFB420C8B2AA96202E6
guidnode://B6770EF6C1EEF2F0741E6B6CC68A2807C6D25963
guidnode://B6770EF6C1EEF2F0741E6B6CC68A2807C6D25963
guidnode://09D2C263DE44841220CB69A9EC6B7905BEC5F60B
guidnode://CF572C9CEE253FFA72D666A01281C0F20DEE9398
guidnode://23DF7B2226517BDA0741E5CCF5F5488F0266C95F
guidnode://23DF7B2226517BDA0741E5CCF5F5488F0266C95F
guidnode://4FCA26456A20EA8773692CEFBAA6686092B8D145
guidnode://E7C6FF51FB3C7AB6A548F470B65C6C6BFFFBC554
guidnode://A874CB5B886E7A36733F78ED6E0C9732D5F5215F
guidnode://AE57D97E4B69DD2E208F4E54A67BF1FAE2749151

About

Online Development Notebook > Index > Programming Overview > DLL Commands > About

About - About the DLL

Description:
This is a USBm.dll function that returns information about the USBm dynamic link
library.

Command Syntax:
true/false USBm_About(string)

The USBm_About function syntax has these parts:

Part Description

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_About always returns TRUE.

Note: USBm_About does not affect the internal error string.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_About _
 Lib "USBm.dll" _
 (ByVal aboutstring As String) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim strng As String * 255

 USBm_About strng
 frmStatus.lstDevices.AddItem "About the USBm DLL: " & strng

This code fragment shows that strng is loaded with the "about" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"about" information will be made visible to the user.

C Prototype
int USBm_About(char *about);

C Example

RobotBASIC
About, Copyright, Version Date, and Version Number are all handled by the
RobotBASIC function usbm_DllSpecs().

usbm_DllSpecs()

Returns a string that contains information about the DLL. There are four sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

About

Copyright

Version Date

Version Number

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

ClearRecentError

Online Development Notebook > Index > Programming Overview > DLL Commands >
ClearRecentError

ClearRecentError - Clear the recent error
string

Description:
This is a USBm.dll function that clears the error string.

Command Syntax:
true/false USBm_ClearRecentError()

The USBm_ClearRecentError function syntax has these parts:

Part Description

No argument

Remarks:
Note: USBm_ClearRecentError always returns TRUE.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_ClearRecentError _
 Lib "USBm.dll" _
 () _
 As Integer

VB Example
 USBm_ClearRecentError

This code fragment clears the error string that is internal to the DLL.

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

C Prototype
int USBm_ClearRecentError(void);

C Example

RobotBASIC
usbm_ClearRecentError()

Always returns -1. The function clears any recent error data in the DLL.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

CloseDevice

Online Development Notebook > Index > Programming Overview > DLL Commands > CloseDevice

CloseDevice - Close the open device

Description:
This is a USBm.dll function that closes access to a USB device.

Command Syntax:
true/false USBm_CloseDevice(device)

The USBm_CloseDevice function syntax has these parts:

Part Description

device Valid device from 0 to the maximum number of devices found (minus 1).
Any other number results in a FALSE return.

Remarks:
Note: USBm_CloseDevice returns TRUE if the device successfully closes.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_CloseDevice _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
Dim result As Integer

 result = USBm_CloseDevice 3

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

This code fragment closes device number three. "Result" will contain TRUE or
FALSE.

C Prototype
int USBm_CloseDevice(unsigned char device);

C Example

RobotBASIC
usbm_CloseDevice(ne_DeviceNumber)

Returns true if the device was successfully closed. False otherwise.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright

Online Development Notebook > Index > Programming Overview > DLL Commands > Copyright

Copyright - DLL copyright

Description:
This is a USBm.dll function that returns a string with DLL copyright information.

Command Syntax:
true/false USBm_Copyright(string)

The USBm_Copyright function syntax has these parts:

Part Description

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_Copyright always returns TRUE.

Note: USBm_Copyright does not affect the internal error string.

VB Declaration
Public Declare Function USBm_Copyright _
 Lib "USBm.dll" _
 (ByVal copyrightstring As String) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim strng As String * 255

 USBm_Copyright strng
 frmStatus.lstDevices.AddItem "Copyright of USBm DLL: " & strng

This code fragment shows that strng is loaded with the "copyright" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"copyright" information will be made visible to the user.

C Prototype
int USBm_Copyright(char *copyright);

C Example

RobotBASIC
About, Copyright, Version Date, and Version Number are all handled by the
RobotBASIC function usbm_DllSpecs().

usbm_DllSpecs()

Returns a string that contains information about the DLL. There are four sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

About

Copyright

Version Date

Version Number

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

DebugString

Online Development Notebook > Index > Programming Overview > DLL Commands > DebugString

DebugString - Return the contents of the
debug string

Description:
This is a USBm.dll function that returns a string with debug information.

Command Syntax:
true/false USBm_DebugString(string)

The USBm_DebugString function syntax has these parts:

Part Description

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_DebugString always returns TRUE.

Note: USBm_DebugString does not affect the internal error string.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DebugString _
 Lib "USBm.dll" _
 (ByVal debugstrng As String) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim strng As String * 255

 USBm_DebugString strng
 frmStatus.lstDevices.AddItem "Debug: " & strng

This code fragment shows that strng is loaded with the "debug" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"debug" information will be made visible to the user.

C Prototype
int USBm_DebugString(char *errorstring);

C Example

RobotBASIC
Recent Error and Debug String are handled by the RobotBASIC function
usbm_ErrorSpecs().

usbm_ErrorSpecs()

Returns a string that contains information about the recent error string and debug
string if any in the DLL. There are two sections seperated by the | character. You
can use the Extract() function to extract each section seperately if desired. The
sections are:

Recent Error

Debug String

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

DeviceDID

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceDID

DeviceDID - Return the Device ID (device
firmware version)

Description:
This is a USBm.dll function that returns the Device ID from a USB device.

Command Syntax:
number USBm_DeviceDID(device)

The USBm_DeviceDID function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

Remarks:
Note: USBm_DeviceDID returns FALSE for an invalid device, otherwise the
return value is the device DID

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceDID _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
Dim result As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 result = USBm_DeviceDID

This code fragment shows that result is loaded with the DID of the device, or with
FALSE if the device does not exist.

C Prototype
int USBm_DeviceDID(unsigned char device);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

DeviceFirmwareVer

Online Development Notebook > Index > Programming Overview > DLL Commands >
DeviceFirmwareVer

DeviceFirmwareVer - Return the device
firmware version

VERSION 58+ of the DLL

Description:
This is a USBm.dll function that returns the Device firmware version from a USB
device.

Command Syntax:
number USBm_DeviceFirmwareVer(device)

The USBm_DeviceFirmwareVer function syntax has these parts:

Part Description

device Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

Remarks:
Note: USBm_DeviceFirmwareVer returns FALSE for an invalid device, otherwise
the return value is the device firmware version.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceFirmwareVer _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim result As Integer

 result = USBm_DeviceFirmwareVer

This code fragment shows that result is loaded with the firmware version of the
device, or with FALSE if the device does not exist.

C Prototype
int USBm_DeviceFirmwareVer(unsigned char device);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

DeviceMfr

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceMfr

DeviceMfr - Return the manufacturer
string of the device

Description:
This is a USBm.dll function that returns the Manufacturer string from a USB device.

Command Syntax:
true/false USBm_DeviceMfr(device, string)

The USBm_DeviceMfr function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_DeviceMfr returns TRUE for a valid device.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceMfr _
 Lib "USBm.dll" _

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 (ByVal device As Byte, _
 ByVal manufacturer As String) _
 As Integer

VB Example
Dim strng As String * 255

 USBm_DeviceMfr 3, strng
 frmStatus.lstDevices.AddItem "Manuf: " & strng

This code fragment shows that strng is loaded with the "manufacturer" text of
device three. Assuming that the form called "Main" exists with a text box called
"Info", the "manufacturer " information will be made visible to the user.

C Prototype
int USBm_DeviceMfr(unsigned char device, char *manuf);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

DevicePID

Online Development Notebook > Index > Programming Overview > DLL Commands > DevicePID

DevicePID - Return the device product ID

Description:
This is a USBm.dll function that returns the Product ID from a USB device (0x0191
for U401).

Command Syntax:
number USBm_DevicePID(device)

The USBm_DevicePID function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

Remarks:
Note: USBm_DevicePID returns FALSE for an invalid device, otherwise the
return value is the device PID

Product ID 0x0191 = U401

Product ID 0x01A5 = U421

Product ID 0x01C3 = U451

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DevicePID _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim result As Integer

 result = USBm_DevicePID

This code fragment shows that result is loaded with the PID of the device, or with
FALSE if the device does not exist.

C Prototype
int USBm_DevicePID(unsigned char device);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

DeviceProd

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceProd

DeviceProd - Return the device product
string

Description:
This is a USBm.dll function that returns the Product string from a USB device.

Command Syntax:
true/false USBm_DeviceProd(device, string)

The USBm_DeviceProd function syntax has these parts:

Part Description

device
 Valid device from 0 to the maximum number of devices found (minus 1)
. Any other number results in a FALSE return.

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_DeviceProd returns TRUE for a valid device.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceProd _
 Lib "USBm.dll" _

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 (ByVal device As Byte, _
 ByVal product As String) _
 As Integer

VB Example
Dim strng As String * 255

 USBm_DeviceProd 3, strng
 frmStatus.lstDevices.AddItem "Product: " & strng

This code fragment shows that strng is loaded with the "product" text of device
three. Assuming that the form called "Main" exists with a text box called "Info", the
"product " information will be made visible to the user.

C Prototype
int USBm_DeviceProd(unsigned char device, char *product);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

DeviceSer

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceSer

DeviceSer - Return the serial number of
the device

Description:
This is a USBm.dll function that returns the Serial number string from a USB
device.

Command Syntax:
true/false USBm_DeviceSer(device, string)

The USBm_DeviceSer function syntax has these parts:

Part Description

device Valid device from 0 to the maximum number of devices found (minus 1)
. Any other number results in a FALSE return.

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_DeviceSer returns TRUE for a valid device.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceSer _

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal serial As String) _
 As Integer

VB Example
Dim strng As String * 255

 USBm_DeviceSer 3, strng
 frmStatus.lstDevices.AddItem "Serial: " & strng

This code fragment shows that string is loaded with the "serial" text of device
three. Assuming that the form called "Main" exists with a text box called "Info", the
"serial" information will be made visible to the user.

C Prototype
int USBm_DeviceSer(unsigned char device, char *product);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

DeviceValid

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceValid

DeviceValid - Return a device-present
indication

Description:
This is a USBm.dll function that returns indication of validity from a USB device.

Command Syntax:
true/false USBm_DeviceValid(device)

The USBm_DeviceValid function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

Remarks:
Note: USBm_DeviceValid always returns TRUE if the device is valid, otherwise
FALSE.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceValid _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
Dim result As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 result = USBm_DeviceValid 3

This code fragment shows that result is loaded with TRUE if device three exists, or
with FALSE if the device does not exist.

C Prototype
int USBm_DeviceValid(unsigned char device);

C Example

RobotBASIC
usbm_DeviceValid(ne_DeviceNumber)

Returns true if the device number refers to a connected and active device. False
otherwise.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

DeviceVID

Online Development Notebook > Index > Programming Overview > DLL Commands > DeviceVID

DeviceVID - Return the device vendor ID

Description:
This is a USBm.dll function that returns the Vendor ID from a USB device.

Command Syntax:
number USBm_DeviceVID(device)

The USBm_DeviceVID function syntax has these parts:

Part Description

device Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

Remarks:
Note: USBm_DeviceVID returns FALSE for an invalid device, otherwise the
return value is the device VID

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_DeviceVID _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
Dim result As Integer

 result = USBm_DeviceVID

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

This code fragment shows that result is loaded with the VID of the device, or with
FALSE if the device does not exist.

C Prototype
int USBm_DeviceVID(unsigned char device);

C Example

RobotBASIC
DID, PID, VID, Mfr, Prod, Serial Number, and Firmware Version are all handled by
the RobotBASIC function usbm_DeviceSpecs(ne_DeviceNumber).

usbm_DeviceSpecs(ne_DeviceNumber)

Returns a string that contains information about the device. There are 7 sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

DID

PID

VID

Mfr

Prod

Serial Number

Firmware Version

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

FindDevices

Online Development Notebook > Index > Programming Overview > DLL Commands > FindDevices

FindDevices - Find all U4x1 devices

Description:
This is a USBm.dll function that scans all of the HID devices available on the bus. If
a device qualifies as a U4x1, then open access to the device and place the device
into the internal data structure for U4xx devices. Devices are indexed with a device
number starting from 0 to the number of devices found minus one. This function is
the initial call to connect devices logically to the PC. Once this function is called
(successfully) then access to the device can be done with the device commands.

Command Syntax:
true/false USBm_FindDevices()

The USBm_FindDevices function syntax has these parts:

Part Description

No argument

Remarks:
Note: USBm_FindDevices returns FALSE for no connected devices, otherwise the
return value is TRUE.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_FindDevices _
 Lib "USBm.dll" _
 () _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim result As Integer

 result = USBm_FindDevices

This code fragment shows that result is loaded with TRUE if devices exist and can
be opened by the DLL, or with FALSE.

C Prototype
int USBm_FindDevices(void);

C Example

RobotBASIC
usbm_FindDevices()

Returns -1 (true) if there are U4x1 devices connected to the PC. Returns 0 (false)
otherwise. You should call this function before you do anything with devices.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

NumberOfDevices

Online Development Notebook > Index > Programming Overview > DLL Commands >
NumberOfDevices

NumberOfDevices - Return the number of
U4x1 devices found

Description:
This is a USBm.dll function that returns the number of valid devices on the USB
bus. (0 to 20)

Command Syntax:
number USBm_NumberOfDevices()

The USBm_NumberOfDevices function syntax has these parts:

Part Description

No argument

Remarks:
Note: USBm_NumberOfDevices does not return TRUE/FALSE. The return value
is the number of detected devices.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_NumberOfDevices _
 Lib "USBm.dll" _
 () _
 As Integer

VB Example

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Dim result As Integer

 result USBm_NumberOfDevices

This code fragment shows that result is loaded with the number of detected
devices.

C Prototype
int USBm_NumberOfDevices(void);

C Example

RobotBASIC
usbm_NumberOfDevices()

Returns the number of U4x1 devices connected to the PC. 0 means there are no
devices connected.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

ReadDevice

Online Development Notebook > Index > Programming Overview > DLL Commands > ReadDevice

ReadDevice - Read "raw" from a device
through the DLL

Description:
This is a USBm.dll function that reads raw bytes from a device.

Command Syntax:
true/false USBm_ReadDevice(device, dataarray)

The USBm_ReadDevice function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

dataarray Series of eight bytes read from device.

Remarks:
Note: USBm_ReadDevice returns TRUE if the device is successfully read.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_ReadDevice _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim InBuffer(8) As Byte

 USBm_ReadDevice 2, InBuffer(0)

This code fragment shows reading a series of bytes from device two. The bytes
would follow the "raw" command format.

C Prototype
int USBm_ReadDevice(unsigned char device, unsigned char
*readbuffer);

C Example

RobotBASIC
usbm_DeviceCmd(ne_DeviceNumber,se_Data)

Returns a string that contains the results of the response to the command specified
in the se_Data string. The data string passed is a set of 8 bytes. The first byte
specifies the command code and the next 7 bytes are any byte data required by the
command. The returned string contains the first byte as the command number
(again) and then the next 7 bytes are any data returned by the command. Not all
the bytes may have significance in either the passed string or the returned string.

The passed string will be truncated to 8 bytes if it is longer. It can be shorter if not
all the byte positions are required.

Use ArraStr() function to extract the byte values from the string. If you wish to
print the data as hexadecimal values then use the Hex() function.

When creating the string of byte values use the Char(desired byte numeric value)
to convert the byte numerical value to a character so that it can be added to the
string.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

RecentError

Online Development Notebook > Index > Programming Overview > DLL Commands > RecentError

RecentError - Return the contents of the
recent error string

Description:
This is a USBm.dll function that returns a string with error information.

Command Syntax:
true/false USBm_RecentError(string)

The USBm_RecentError function syntax has these parts:

Part Description

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_RecentError always returns TRUE.

Note: USBm_RecentError does not affect the internal error string.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_RecentError _
 Lib "USBm.dll" _
 (ByVal errorstring As String) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim strng As String * 255

 USBm_RecentError strng
 frmStatus.lstDevices.AddItem "About the USBm DLL: " & strng

This code fragment shows that strng is loaded with the "error" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"error" information will be made visible to the user.

C Prototype
int USBm_RecentError(char *errorstring);

C Example

RobotBASIC
Recent Error and Debug String are handled by the RobotBASIC function
usbm_ErrorSpecs().

usbm_ErrorSpecs()

Returns a string that contains information about the recent error string and debug
string if any in the DLL. There are two sections seperated by the | character. You
can use the Extract() function to extract each section seperately if desired. The
sections are:

Recent Error

Debug String

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

SetReadTimeout

Online Development Notebook > Index > Programming Overview > DLL Commands >
SetReadTimeout

SetReadTimeout - Set the timeout for the
read operation

Description:
This is a USBm.dll function that sets the value for the read timeout.

Command Syntax:
true/false USBm_SetReadTimeout(time)

The USBm_SetReadTimeout function syntax has these parts:

Part Description

time A sixteen-bit value of milliseconds.

Remarks:
Note: USBm_SetReadTimeout always returns TRUE.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_SetReadTimeout _
 Lib "USBm.dll" _
 (ByVal timeout As Integer) _
 As Integer

VB Example
 USBm_SetReadTimeout 3000

This code fragment shows that the read timeout has been set to three seconds.

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

C Prototype
int USBm_SetReadTimeout(unsigned int timeout);

C Example

RobotBASIC
usbm_SetReadTimeout(ne_Time)

Returns true if successful, false otherwise. This function sets the timeout for all the
read commands. The value should be in milliseconds. The default is 1000 msecs =
1 sec.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Version

Online Development Notebook > Index > Programming Overview > DLL Commands > Version

Version - Return the DLL version

Description:
This is a USBm.dll function that returns the version of the DLL.

Command Syntax:
number USBm_Version(string)

The USBm_Version function syntax has these parts:

Part Description

string Any valid string expression.

Remarks:
In VB the string passed as an argument must be large enough to hold all the
characters that the function places in the string. The best way to acheive this is to
set the string to a large size with the String function as in this code:

strStrng = String(250, " ")

Note: USBm_Version does not return TRUE/FALSE. The return value is the
integer version number.

Note: USBm_Version does not affect the internal error string.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_Version _
 Lib "USBm.dll" _
 (ByVal versionstring As String) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim strng As String * 255
Dim result As Integer

 result = USBm_Version strng
 frmStatus.lstDevices.AddItem "About the USBm DLL: " & strng

This code fragment shows that strng is loaded with the "version" text of the DLL.
Assuming that the form called "Main" exists with a text box called "Info", the
"version" information will be made visible to the user. "Result" will contain a
numerical version number.

C Prototype
int USBm_Version(char *version);

C Example

RobotBASIC
About, Copyright, Version Date, and Version Number are all handled by the
RobotBASIC function usbm_DllSpecs().

usbm_DllSpecs()

Returns a string that contains information about the DLL. There are four sections
seperated by the | character. You can use the Extract() function to extract each
section seperately if desired. The sections are:

About

Copyright

Version Date

Version Number

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

WriteDevice

Online Development Notebook > Index > Programming Overview > DLL Commands > WriteDevice

WriteDevice - Write "raw" to a device
through the DLL

Description:
This is a USBm.dll function that writes raw bytes to device.

Command Syntax:
true/false USBm_WriteDevice(device, dataarray)

The USBm_WriteDevice function syntax has these parts:

Part Description

device
Valid device from 0 to the maximum number of devices found (minus
1) . Any other number results in a FALSE return.

dataarray Series of eight bytes to write to device.

Remarks:
Note: USBm_WriteDevice returns TRUE if the device is successfully written.

VB Declaration (USBmAPI.bas)
Public Declare Function USBm_WriteDevice _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _
 As Integer

guidnode://A12A8CA1BFD64B962262994B50EF314DDBF83DA2
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
Dim OutBuffer(8) As Byte

 OutBuffer(0) = 0
 OutBuffer(1) = 21
 OutBuffer(2) = 3
 OutBuffer(3) = 65
 OutBuffer(4) = 8
 OutBuffer(5) = 17
 OutBuffer(6) = 60
 OutBuffer(7) = 0

 USBm_WriteDevice 2, OutBuffer(0)

This code fragment shows writing a series of bytes to device two. The bytes would
follow the "raw" command format.

C Prototype
int USBm_WriteDevice(unsigned char device, unsigned char *writebuffer
);

C Example

RobotBASIC
usbm_DeviceCmd(ne_DeviceNumber,se_Data)

Returns a string that contains the results of the response to the command specified
in the se_Data string. The data string passed is a set of 8 bytes. The first byte
specifies the command code and the next 7 bytes are any byte data required by the
command. The returned string contains the first byte as the command number
(again) and then the next 7 bytes are any data returned by the command. Not all
the bytes may have significance in either the passed string or the returned string.

The passed string will be truncated to 8 bytes if it is longer. It can be shorter if not
all the byte positions are required.

Use ArraStr() function to extract the byte values from the string. If you wish to
print the data as hexadecimal values then use the Hex() function.

When creating the string of byte values use the Char(desired byte numeric value)
to convert the byte numerical value to a character so that it can be added to the
string.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

Device Commands

Online Development Notebook > Index > Programming Overview > Device Commands

Device Commands

The Command Format Table below summarizes all of the allowed commands that
deal with device manipulation. The individual command pages that follow this
summary give detailed information on the format and use of these commands.

Command
Name

Description

InitPorts (and
variations)

Initialize both 8 bit ports, reset internal latches.

WriteA Write byte value to port A

WriteB Write byte value to port B

WriteABit Write select bits (masked and/or term) to port A

WriteBBit Write select bits (masked and/or term) to port B

ReadA Read byte value from port A

ReadB Read byte value from port B

SetBit Set a single one of the port bits to 1/high

ResetBit Set a single one of the port bits to 0/low

DirectionA (and
variations)

Direction of port A

DirectionB (and
variations)

Direction of port B

StrobeWrite Write to a port and strobe a line

StrobeWrite2 Write to a port and strobe a line

guidnode://03741A88180E1B76F3741DCCEA9674656ED805C6
guidnode://B9A9986C2DDA0C239862E541FA7D6EE6889BB96F
guidnode://D24E4F35BB45EE9FEB637F4F9274B00C22CC8A9E
guidnode://D24E4F35BB45EE9FEB637F4F9274B00C22CC8A9E
guidnode://3218627C5C37895F561D921350D58C06B9375694
guidnode://3218627C5C37895F561D921350D58C06B9375694
guidnode://202C15B03DE302548887D79E90865C877BA2E272
guidnode://45C1DAF372FC5C964379E0F9BDAB1595016A295D
guidnode://7EE143213BB07C45527C2C565598DE8D1C9DA4E1
guidnode://356CE7B95D3A3C9BD0F403A96D9C5199039F3F8F
guidnode://EB8A1E35BD1FFD4154DF20F9814C1B02C3D6BC18
guidnode://320129B6E551C260457DCEF7003F17A02345466F
guidnode://8F4326E75B0EB903839DD3D5AD313A9E91594D56
guidnode://F1BD62846B70D85E199AC15A6E1ADAEB55D6D926
guidnode://7EF66C0E40ABD385841C8B0B591FC9690A22811D
guidnode://7EF66C0E40ABD385841C8B0B591FC9690A22811D
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

StrobeRead Read from a port and strobe a line

StrobeRead2 Read from a port and strobe a line

StrobeWrites Write bytes to a port and strobe a line

StrobeReads Read bytes from a port and strobe a line

ReadLatches Read internal pin-change latches

InitLCD Set up the device to use an LCD

LCDCmd Send a command to the LCD

LCDData Send a character to the LCD

InitSPI Set up the device to use SPI (3-wire interface)

SPIMaster Communicate with (read/write) a SPI device

SPISlaveWrite Write bytes for a SPI master to read

SPISlaveRead Read bytes sent by a SPI master

Wire2Control Send a 2-wire signal to the 2-wire port

Wire2Data Send 2-wire data (8 or 9 bits) to the 2-wire port, receive data

Stepper Set up / control a stepper motor

Reset1Wire Set up and reset a 1-wire bus/device

Write1Wire Write a byte to a 1-wire bus/device

Read1Wire Read byte from a 1-wire bus/device

Write1WireBit Write bit to a 1-wire bus/device

Read1WireBit Read bit from a 1-wire bus/device

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://DE6A7779DA422C17C2E9961A6406746B81D85BC9
guidnode://DD82ABFF388BAC4651636BB2AB8004D7D2490A0C
guidnode://74145D5139FFD525B10568B7BBF1075944C84CA8
guidnode://8FEB14D5B90042069922404DC6884636436AB26F
guidnode://DE3478F0E71ECB053FACA69F6D3A1F3218CA5181
guidnode://50235FEDBC62BF5F76EDDC501CB267E4F4ED54E9
guidnode://6B61C623177F6DBF13D77C22A718ADB58F35D6C7
guidnode://3C2FFA4602BABE938DD74F6B1434DAFA0450557C
guidnode://96AB2D059DC152A10ADA45EC5CD98002413D3077
guidnode://8E9DA893572AC75D763E9C859481295FF7F373F7
guidnode://5AABA1A0367DD3F2D583A88D5A590A5B45E1ED42
guidnode://E7CE4B334EBF6E403EB6F5CD210A07B84AC8D3EB
guidnode://73C79D78AEA28ACF42EB035EE2712A695ED1C662
guidnode://D48A3165C8279D632466B4B4EFA81048504797CA
guidnode://B18FBA3BE65EB6084CB09ECF3294ECFA4602C60F
guidnode://691181F9A5E103553F18CDE4A2645DACE3B8EC5D
guidnode://D93B52AEF3D95F9E8524CFBDB869E6FFDA71A243
guidnode://77E5E7C09C2DCD60F092DC5C0302300F50B99E8F
guidnode://640E08D831EE042603C86F9CB3423F02F2D133B2
guidnode://24EA8347A18690E31F12AF53E095CA4950761729

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

InitPorts

Online Development Notebook > Index > Programming Overview > Device Commands > InitPorts
(and variations)

InitPorts (and variations) - Initialize
device, ports

Description:
This is a function that initializes both ports, and resets the device's internal latches.

There are two 8-bit ports on the U401/421/U451, 16 I/O lines. The 16 total I/O
lines can be set to inputs or outputs on an individual per-line basis. The initial state
of the ports on power up is that all of the 16 lines are set to be inputs.

Command Syntax: (USBm.dll)
USBm_InitPorts(device)

The USBm_InitPorts function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

Remarks:
Calling USBm_InitPorts will reset the ports to input and will clear the internal
latches.

Calling USBm_InitPortsU401 will reset the ports to input and will clear the
internal latches.

Calling USBm_InitPortsU421 will reset the ports to input and will clear the
internal latches.

Calling USBm_InitPortsU451 will reset port A to input, port B to output and will
clear the internal latches.

There is nothing stopping you from calling the USBm_InitPortsU421 when

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

connected to a U401, for instance. Or any of the other combinations. The different
flavors of init are provided for user convenience. USBm_InitPortsU451 is
currently the only different one in the group as it sets port B to all output.

USBm_InitPorts is in all versions of the DLL. The variations are present in version
65 or newer.

VB Declaration
Public Declare Function USBm_InitPorts _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_InitPortsU401 _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_InitPortsU421 _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_InitPortsU451 _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
USBm_InitPorts (3)

This code fragment initializes the ports of device number three.

C Prototype
int USBm_InitPorts(unsigned char device);
int USBm_InitPortsU401(unsigned char device);
int USBm_InitPortsU421(unsigned char device);
int USBm_InitPortsU451(unsigned char device);

C Example
USBm_InitPorts(0);

This code fragment initializes the ports of device number 0 (the first U4x1 device

that is found).

RobotBASIC
usbm_InitPorts(ne_DeviceNumber)

Returns true if successful, false otherwise. This function resets the A and B ports as
Input Ports, which is the default state upon connecting the device to the PC.

Raw Command Format:

Byte
Number

Description

0 00h: InitPortsCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 00h: InitPortsCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Sending the InitPortsCmd command to the device will reset the ports.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

WriteA

Online Development Notebook > Index > Programming Overview > Device Commands > WriteA

WriteA - Write byte value to port A

Description:
This is a function that writes a byte value to port A when the port is set as an
output. The possible values range from 0-255 (00h to FFh).

Command Syntax: (USBm.dll)
USBm_WriteA(device, data)

The USBm_WriteA function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data Byte to write to Port A.

Remarks:
Port A does not have to have all 8 bits set to output for this to work. You can have
a mix of inputs and outputs on the port and this command will set high or low only
those lines that are output.

VB Declaration
Public Declare Function USBm_WriteA _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte) _
 As Integer

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
USBm_WriteA 3, &H55

This code fragment writes the value of &H55 to port A of device 3.

C Prototype
int USBm_WriteA(unsigned char device, unsigned char data);

C Example

RobotBASIC
usbm_WriteA(ne_DeviceNumber,ne_ByteValue)

Returns true if successful, false otherwise. The byte value is written to Port A/B.

Raw Command Format:

Byte
Number

Description

0 01h: WriteACmd

1 Byte Data - This byte is written to port A, D0 - D7
The most significant bit of the byte value is written to D7

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the data to write to port A. Byte 2
through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 01h: WriteACmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Writing a E7h to port A with the command 01-E7-00-00-00-00-00-00 will set A.7,
A.6, A.5, A.2, A.1, and A.0 high and will set lines A.4 and A.3 low, assuming that
they are configured as outputs.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

WriteB

Online Development Notebook > Index > Programming Overview > Device Commands > WriteB

WriteB - Write byte value to port B

Description:
This is a function that writes a byte value to port B when the port is set as an
output. The possible values range from 0-255 (00h to FFh).

Command Syntax: (USBm.dll)
USBm_WriteB(device, data)

The USBm_WriteB function syntax has these parts:

DescriptionDescription

device A zero-based index to address the appropriate USB device.

data Byte to write to Port B.

Remarks:
Port B does not have to have all 8 bits set to output for this to work. You can have
a mix of inputs and outputs on the port and this command will set high or low only
those lines that are output.

VB Declaration
Public Declare Function USBm_WriteB _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte) _
 As Integer

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
USBm_WriteB 7, &H0F

This code fragment writes the value of &H0F to port B of device 7.

C Prototype
int USBm_WriteB(unsigned char device, unsigned char data);

C Example

RobotBASIC
usbm_WriteB(ne_DeviceNumber,ne_ByteValue)

Returns true if successful, false otherwise. The byte value is written to Port A/B.

Raw Command Format:

Byte
Number

Description

0 02h: WriteBCmd

1 Byte Data - This byte is written to port B, D8 - D15
The most significant bit of the byte value is written to D15

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the data to write to port B. Byte 2
through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 02h: WriteBCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Writing a 11h to port B with the command 02-11-00-00-00-00-00-00 will set lines
B.4 and B.3 high and will set the remainder of the lines low, assuming that they are
configured as outputs.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

WriteABit

Online Development Notebook > Index > Programming Overview > Device Commands > WriteABit

WriteABit - Write select bits (masked
and/or term) to port A

Description:
This is a function that writes masked values to port A when the port is set as an
output. The net result of writing masked values is that only the specified bits will be
written. The resulting port condition is the logic combination of the current port
state ANDed with the first term and then ORed with the second. This command can
affect any number of lines on the port.

Command Syntax: (USBm.dll)
USBm_WriteABit(device, and_term, or_term)

The USBm_WriteABit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

and_term
Bits in and_term that are 0 force the line to be a zero. The set bits act as
a "don't care". Think of the 0 positions in and_term as "turn off".

or_term Bits in or_term that are 1 force the output line high, the bits set to 0 are
don't-cares. Think of the 1 positions in or_term as "turn on".

Remarks:
Port A does not have to have all 8 bits set to output for this to work. You can have
a mix of inputs and outputs on the port and this command will set high or low only
those lines that are output.

For setting (to 1) and resetting (to 0) individual output lines one line at a time use

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

the SetBit and ResetBit commands.

VB Declaration
Public Declare Function USBm_WriteABit _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal and_term As Byte, _
 ByVal or_term As Byte) _
 As Integer

VB Example
frmStatus.lstDevices.AddItem " "

USBm_WriteABit 5, &HFF, &H0F

This code fragment addresses port A of device 5 It sets the lower nibble (lower 4
lines) high. The AND term can be FFh (all don't-cares), the OR term would then be
0Fh.

C Prototype
int USBm_WriteABit(unsigned char device, unsigned char andterm,
unsigned char orterm);

C Example

RobotBASIC
usbm_WriteABit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)

Returns true if successful, false otherwise. This function reads the current status of
the pins in the A/B port and then ands the value with the anding mask, then the
new value is ored with the oring mask, then the result is written to port A/B. Note:
you can also use the ReadA/B() function then manipulate the byte returned using
RB functions or operators and then use WriteA/B() to write the result to the port.
This perfoms the same action.

Raw Command Format:

Byte
Number

Description

0 03h: WriteABitCmd

1 AND term (off term)

2 OR term (on term)

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the AND term, byte 2 is the OR term. Byte
3 through byte 7 are unused.

Bits in the AND term that are 0 force the line to be a zero. The set bits act as a
"don't care". Think of the 0 positions in the AND term as "turn off".

Bits in the OR term that are 1 force the output line high, the bits set to 0 are don't-
cares. Think of the 1 positions in the OR term as "turn on".

Raw Command Response Format:

Byte
Number

Description

0 03h: WriteABitCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Set every line in the port to output using the direction command. Set the entire
port to 00h using the port write command.

Now set the lower nibble (lower 4 lines) high. The AND term can be FFh (all don't-
cares), the OR term would then be 0Fh.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

WriteBBit

Online Development Notebook > Index > Programming Overview > Device Commands > WriteBBit

WriteBBit - Write select bits (masked
and/or term) to port B

Description:
This is a function that writes masked values to port B when the port is set as an
output. The net result of writing masked values is that only the specified bits will be
written. The resulting port condition is the logic combination of the current port
state ANDed with the first term and then ORed with the second. This command can
affect any number of lines on the port.

Command Syntax: (USBm.dll)
USBm_WriteBBit(device, and_term, or_term)

The USBm_WriteBBit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

and_term
Bits in and_term that are 0 force the line to be a zero. The set bits act as
a "don't care". Think of the 0 positions in and_term as "turn off".

or_term Bits in or_term that are 1 force the output line high, the bits set to 0 are
don't-cares. Think of the 1 positions in or_term as "turn on".

Remarks:
Port A does not have to have all 8 bits set to output for this to work. You can have
a mix of inputs and outputs on the port and this command will set high or low only
those lines that are output.

For setting (to 1) and resetting (to 0) individual output lines one line at a time use

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

the SetBit and ResetBit commands.

VB Declaration
Public Declare Function USBm_WriteBBit _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal and_term As Byte, _
 ByVal or_term As Byte) _
 As Integer

VB Example
USBm_WriteBBit 2, &H0F, &H00

This code fragment addresses port B of device 2 It sets the uppor nibble (higher 4
lines) low while allowing the lower nibble to remain unchanged.

C Prototype
int USBm_WriteBBit(unsigned char device, unsigned char andterm,
unsigned char orterm);

C Example

RobotBASIC
usbm_WriteBBit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)

Returns true if successful, false otherwise. This function reads the current status of
the pins in the A/B port and then ands the value with the anding mask, then the
new value is ored with the oring mask, then the result is written to port A/B. Note:
you can also use the ReadA/B() function then manipulate the byte returned using
RB functions or operators and then use Write/AB() to write the result to the port.
This perfoms the same action.

Raw Command Format:

Byte
Number

Description

0 04h: WriteBBitCmd

1 AND term (off term)

2 OR term (on term)

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the AND term, byte 2 is the OR term. Byte
3 through byte 7 are unused.

Bits in the AND term that are 0 force the line to be a zero. The set bits act as a
"don't care". Think of the 0 positions in the AND term as "turn off".

Bits in the OR term that are 1 force the output line high, the bits set to 0 are don't-
cares. Think of the 1 positions in the OR term as "turn on".

Raw Command Response Format:

Byte
Number

Description

0 04h: InitPortsCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Set every line in the port to output using the direction command. Set the entire
port to FFh using the port write command.

Now set the lower nibble (lower 4 lines) low. The AND term should be F0h, the OR
term would then be 00h (or even F0h).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

ReadA

Online Development Notebook > Index > Programming Overview > Device Commands > ReadA

ReadA - Read byte value from port A

Description:
This is a function that reads a byte value from port A. The returned value is the
state of the port lines that an external device has set, if the line is an input. The
lines that might be configured as outputs return the output state.

Command Syntax: (USBm.dll)
USBm_ReadA(device, dataarray)

The USBm_ReadA function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray A byte array where the returned data will be stored. Minimum size of the
array must be 1 byte

Remarks:
Port A does not have to have all 8 bits set to input for this to work. You can have a
mix of inputs and outputs on the port and this command will read the entire port.

VB Declaration
Public Declare Function USBm_ReadA _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 As Integer

VB Example
Dim dataarray(1) As Byte
 USBm_ReadA 0, data(0)

This code fragment reads port A of device 0, placing the result into "dataarray(0)".

C Prototype
int USBm_ReadA(unsigned char device, unsigned char *data);

C Example

RobotBASIC
usbm_ReadA(ne_DeviceNumber)

Returns the byte value representing the states of the pins on Port A/B. The value
returned is not a valid value if the device is not a validly active device.

Raw Command Format:

Byte
Number

Description

0 05h: ReadACmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 05h: ReadACmd

1 Data read from port A

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the current value of port A. Byte 2
through byte 7 are unused.

Raw Command Example Usage:
If the port lines were hi/lo/hi/lo/hi/lo/hi/lo (msb high), the command 05-00-00-00-
00-00-00-00 would return 05-AA-00-00-00-00-00-00 (assuming that the port is set
as all inputs).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

ReadB

Online Development Notebook > Index > Programming Overview > Device Commands > ReadB

ReadB - Read byte value from port B

Description:
This is a function that reads a byte value from port B. The returned value is the
state of the port lines that an external device has set, if the line is an input. The
lines that might be configured as outputs return the output state.

Command Syntax: (USBm.dll)
USBm_ReadB(device, dataarray)

The USBm_ReadB function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray A byte array where the returned data will be stored. Minimum size of the
array must be 1 byte

Remarks:
Port B does not have to have all 8 bits set to input for this to work. You can have a
mix of inputs and outputs on the port and this command will read the entire port.

VB Declaration
Public Declare Function USBm_ReadB _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 As Integer

VB Example
Dim dataarray(1) As Byte
 USBm_ReadB 4, dataarray(0)

This code fragment reads port B of device 4, placing the result into "dataarray(0)".

C Prototype
int USBm_ReadB(unsigned char device, unsigned char *data);

C Example

RobotBASIC
usbm_ReadB(ne_DeviceNumber)

Returns the byte value representing the states of the pins on Port A/B. The value
returned is not a valid value if the device is not a validly active device.

Raw Command Format:

Byte
Number

Description

0 06h: ReadBCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 06h: ReadBCmd

1 Data read from port B

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the current value of port B. Byte 2
through byte 7 are unused.

Raw Command Example Usage:
If the port lines were hi/hi/hi/hi/lo/lo/lo/lo (msb high), the command 06-00-00-00-
00-00-00-00 would return 06-F0-00-00-00-00-00-00 (assuming that the port is set
as all inputs).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

SetBit

Online Development Notebook > Index > Programming Overview > Device Commands > SetBit

SetBit - Set a single one of the port bits
to 1/high

Description:
This is a function that sets a single bit/line high.

Command Syntax: (USBm.dll)
USBm_SetBit(device, bit)

The USBm_SetBit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

bit The bit that will be affected.

Remarks:
Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 (Port A, pin 0) 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

VB Declaration
Public Declare Function USBm_SetBit _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal bit As Byte) _
 As Integer

VB Example
USBm_SetBit 0, 3

This code fragment sets bit A.3 of device 0.

C Prototype
int USBm_SetBit(unsigned char device, unsigned char bit);

C Example

RobotBASIC
usbm_SetBit(ne_DeviceNumber,ne_PinNumber)

Returns true if successful, false otherwise. This function makes high/low a particula
pin on any of the ports. The pin number is 0 for A0 1 for A1...7 for A7...8 for

B0,15 for B7.

Raw Command Format:

Byte
Number

Description

0 07h: SetBitCmd

1 Data - This is the line to set

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the line to set. Byte 2 through byte
7 are unused.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

Raw Command Response Format:

Byte
Number

Description

0 07h: SetBitCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
The command 07-07-00-00-00-00-00-00 will set lines A.7 high, assuming it is
configured as an output.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

ResetBit

Online Development Notebook > Index > Programming Overview > Device Commands > ResetBit

ResetBit - Set a single one of the port bits
to 0/low

Description:
This is a function that resets a single bit/line low.

Command Syntax: (USBm.dll)
USBm_ResetBit(device, bit)

The USBm_ResetBit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

bit The bit that will be affected.

Remarks:
Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 (Port A, pin 0) 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

VB Declaration
Public Declare Function USBm_ResetBit _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal bit As Byte) _
 As Integer

VB Example
USBm_ResetBit 0, 0

This code fragment clears bit A.0 of device 0.

C Prototype
int USBm_ResetBit(unsigned char device, unsigned char bit);

C Example

RobotBASIC
usbm_ResetBit(ne_DeviceNumber,ne_PinNumber)

Returns true if successful, false otherwise. This function makes high/low a particula
pin on any of the ports. The pin number is 0 for A0 1 for A1...7 for A7...8 for
B0,15 for B7.

Raw Command Format:

Byte
Number

Description

0 08h: ResetBitCmd

1 Data - This is the line to reset: D0 - D15

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the line to reset. Byte 2 through
byte 7 are unused.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

Raw Command Response Format:

Byte
Number

Description

0 08h: ResetBitCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
The command 08-01-00-00-00-00-00-00 will set lines A.1 low, assuming it is
configured as an output.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

DirectionA

Online Development Notebook > Index > Programming Overview > Device Commands > DirectionA
(and variations)

DirectionA (and variations) - Set
direction of port A

Description:
This is a function that sets the i/o direction of port A.

Command Syntax: (USBm.dll)
USBm_DirectionA(device, dir0, dir1)

The USBm_DirectionA function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dir0 Port direction.

dir1 Port direction.

USBm_DirectionAOut(device)

The USBm_DirectionAOut function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

USBm_DirectionAIn(device)

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

The USBm_DirectionAIn function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

USBm_DirectionAInPullup(device)

The USBm_DirectionAInPullup function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

Remarks:
The individual pins of the ports can be set to input, or output. Input is set when
both bits associated with a particular line are set to 0. There are different types of
outputs available for the board, but generally setting both of the direction bits to 1
will suffice.

To set all pins in the port to input, set dir0 = 00h and dir1 = 00h. To set the highest
port pin to output set the highest bit in both registers, dir0 = 80h and dir1 = 80h.

USBm_DirectionAOut will set all of the lines of port A to outputs.

USBm_DirectionAIn will set all of the lines of port A to inputs.

USBm_DirectionAInPullup will set all of the lines of port A to inputs with the
internal pull up resistors enabled.

USBm_DirectionA is in all versions of the DLL. The variations are present in
version 65 or newer.

VB Declaration
Public Declare Function USBm_DirectionA _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal dir0 As Byte, _
 ByVal dir1 As Byte) _
 As Integer

Public Declare Function USBm_DirectionAOut _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_DirectionAIn _

 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_DirectionAInPullup _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
USBm_DirectionA 1, 0, 0

This code fragment sets port A of device 1 to input.

C Prototype
int USBm_DirectionA(unsigned char device, unsigned char dir0,
unsigned char dir1);
int USBm_DirectionAOut(unsigned char device);
int USBm_DirectionAIn(unsigned char device);
int USBm_DirectionAInPullup(unsigned char device);

C Example
USBm_DirectionAInPullup(0);

This code fragment sets port A of device 0 to input, with the internal pull up
resistors enabled.

RobotBASIC
usbm_DirectionA(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)

Returns true if successful, false otherwise. This function sets the direction of each
specific pin in the port. A 1 in the pin position means output, a 0 is input. The
format byte should contain a 1 for each pin's position if it is output. If it is input you
can have a 1 if you want an input pin with a pull up resistor, a 0 if you want the pin
to have no pull up resistor.

Raw Command Format:

Byte
Number

Description

0 09h: DirectionACmd

1 direction0 The most significant bit of the byte value is associated with A.7

2 direction1 The most significant bit of the byte value is associated with A.7

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is written to the direction0 control register,
byte 2 is written to the direction1 control register appropriate for this port. Byte 3
through byte 7 are unused.

The individual pins of the ports can be set to input, or output. Input is set when
both bits associated with a particular line are set to 0. There are different types of
outputs available for the board, but generally setting both of the direction bits to 1
will suffice.

Raw Command Response Format:

Byte
Number

Description

0 09h: DirectionACmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
The command 09-00-00-00-00-00-00-00 will set the port to all input, the
command 09-FF-FF-00-00-00-00-00 will set the port to all output. To have the
upper nibble be input and the lower nibble output, use the command 09-0F-0F-00-
00-00-00-00.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

DirectionB

Online Development Notebook > Index > Programming Overview > Device Commands > DirectionB
(and variations)

DirectionB (and variations) - Set
direction of port B

Description:
This is a function that sets the i/o direction of port B.

Command Syntax: (USBm.dll)
USBm_DirectionB(device, dir0, dir1)

The USBm_DirectionB function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dir0 Port direction.

dir1 Port direction.

USBm_DirectionBOut(device)

The USBm_DirectionBOut function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

USBm_DirectionBIn(device)

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

The USBm_DirectionBIn function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

USBm_DirectionBInPullup(device)

The USBm_DirectionBInPullup function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

Remarks:
The individual pins of the ports can be set to input, or output. Input is set when
both bits associated with a particular line are set to 0. There are different types of
outputs available for the board, but generally setting both of the direction bits to 1
will suffice.

To set all pins in the port to input, set dir0 = 00h and dir1 = 00h. To set the highest
port pin to output set the highest bit in both registers, dir0 = 80h and dir1 = 80h.

USBm_DirectionBOut will set all of the lines of port B to outputs.

USBm_DirectionBIn will set all of the lines of port B to inputs.

USBm_DirectionBInPullup will set all of the lines of port B to inputs with the
internal pull up resistors enabled.

USBm_DirectionB is in all versions of the DLL. The variations are present in
version 65 or newer.

VB Declaration
Public Declare Function USBm_DirectionB _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal dir0 As Byte, _
 ByVal dir1 As Byte) _
 As Integer

Public Declare Function USBm_DirectionBOut _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_DirectionBIn _

 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

Public Declare Function USBm_DirectionBInPullup _
 Lib "USBm.dll" _
 (ByVal device As Byte) _
 As Integer

VB Example
USBm_DirectionB 1, 0, 0

This code fragment sets port B of device 1 to input.

C Prototype
int USBm_DirectionB(unsigned char device, unsigned char dir0,
unsigned char dir1);
int USBm_DirectionBOut(unsigned char device);
int USBm_DirectionBIn(unsigned char device);
int USBm_DirectionBInPullup(unsigned char device);

C Example
USBm_DirectionBInPullup(0);

This code fragment sets port B of device 0 to input, with the internal pull up
resistors enabled.

RobotBASIC
usbm_DirectionB(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)

Returns true if successful, false otherwise. This function sets the direction of each
specific pin in the port. B 1 in the pin position means output, a 0 is input. The
format byte should contain a 1 for each pin's position if it is output. If it is input you
can have a 1 if you want an input pin with a pull up resistor, a 0 if you want the pin
to have no pull up resistor.

Raw Command Format:

Byte
Number

Description

0 0Ah: DirectionBCmd

1 direction0 The most significant bit of the byte value is associated with B.7

2 direction1 The most significant bit of the byte value is associated with B.7

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is written to the direction0 control register,
byte 2 is written to the direction1 control register appropriate for this port. Byte 3
through byte 7 are unused.

The individual pins of the ports can be set to input, or output. Input is set when
both bits associated with a particular line are set to 0. There are different types of
outputs available for the board, but generally setting both of the direction bits to 1
will suffice.

Raw Command Response Format:

Byte
Number

Description

0 0Ah: DirectionBCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
The command 0A-00-00-00-00-00-00-00 will set the port to all input, the
command 0A-FF-FF-00-00-00-00-00 will set the port to all output. To have the
upper nibble be input and the lower nibble output, use the command 0A-0F-0F-00-
00-00-00-00.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeWrite

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeWrite

StrobeWrite - Write 8 bits to a port and
strobe a control line

Description:
This is a function that strobes the write of a byte value to a port. This command
selects port A or B for the written byte, as well as a polarity (negative or positive)
and a line (A.0 - B.7) to toggle. The byte is written and then the line toggled.

Command Syntax: (USBm.dll)
USBm_StrobeWrite(device, data, port, sel)

The USBm_StrobeWrite function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray Data to write.

port The port to write the byte. A value of 00h is port A, a value of 01h is port
B.

sel The strobe direction and the strobe line selection.

Remarks:
Bit/Line Selection

Byte
Value

Result Byte
Value

Result

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

With sel set to the Bit/Line Selection values, the strobe is negative-going. By
adding 10h to this value, the strobe will be positive-going. For example: 18h would
pulse B.0 from low to high, and back low.

VB Declaration
Public Declare Function USBm_StrobeWrite _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal dataarray As Byte, _
 ByVal port As Byte, _
 ByVal sel As Byte) _
 As Integer

VB Example
USBm_SetBit 1, 15
USBm_StrobeWrite 1, &H55, 0, &H0F

If a device is connected to the U4xx that will accept a byte of data from port A
when B.7 is toggled from high to low and back to high, then the above sample code
would write &H55 to this device.

First set the B.7 line high with USBm_SetBit. The line is set high to begin with
because the strobe functions do not initialize the state or direction of the line. (B.7
needs to be set as an output.)

Then write to port A and toggle B.7 low, then high. The breakdown of the first four
bytes of the command is: 1 - device, &H55 - data to write, 0 - port to write (A), 15
- line to toggle (-F) and toggle direction (0-).

Changing to a positive strobe would necessitate changing the initial line value, and
substituting &H1F for the fourth byte.

C Prototype
int USBm_StrobeWrite(unsigned char device, unsigned char data,
unsigned char port, unsigned char sel);

C Example

RobotBASIC
usbm_StrobeWrite(ne_DeviceNumber,se_ByteData)

Returns true if successfull, false otherwise. Writes a byte to a port based on a
strobing line and timing. the byte data string specifies the setup and so forth.

Raw Command
See StrobeWrite2.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeWrite2

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeWrite2

StrobeWrite2 - Write 8 bits to a port and
strobe a control line

VERSION 1.34+ of the firmware, VERSION 42+ of the DLL

Description:
StrobeWrite with strobe pulse length.

Command Syntax: (USBm.dll)
USBm_StrobeWrite2(device, data, port, sel, len)

The USBm_StrobeWrite2 function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data Data to write.

port
The port to write the byte. A value of 00h is port A, a value of 01h is port
B.

sel The strobe direction and the strobe line selection.

len The strobe length.

del The delay between multiple bytes. VERSION 1.46+ of the firmware,
VERSION 56+ of the DLL

Remarks:

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Same as StrobeWrite, but "len" is the strobe length from about 10 microseconds to
about 200 microseconds. The value of "del" is the delay between bytes.

VB Declaration
Public Declare Function USBm_StrobeWrite2 _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte, _
 ByVal port As Byte, _
 ByVal sel As Byte, _
 ByVal len As Byte) _
 ByVal del As Byte) _
 As Integer

VB Example
USBm_SetBit 1, 15
USBm_StrobeWrite2 1, &H55, 0, &H0F, 20

The "20" selects a longer strobe pulse.

C Prototype
int USBm_StrobeWrite2(unsigned char device, unsigned char data,
unsigned char port, unsigned char sel, unsigned char len, unsigned
char del);

C Example

RobotBASIC

Raw Command Format:

Byte
Number

Description

0 0Bh: StrobeWriteCmd

1 Byte data to write

2 Port to write data

3 Negative/Positive strobe selection and strobe line selection

4 Strobe pulse length VERSION 1.34+ of the firmware

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the data to write. Byte 2 indicates the port
to write the byte. A value of 00h is port A, a value of 01h is port B.

Byte 3 contains the strobe direction and the strobe line selection.

Byte 4 contains a delay to lengthen the strobe. Valid values from 00h - FFh (0 -
255).

Byte 5 through byte 7 are unused.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

With Byte 3 set to the Bit/Line Selection values, the strobe is negative-going. By
adding 10h to this value, the strobe will be positive-going. For example: 18h would
pulse B.0 from low to high, and back low.

Raw Command Response Format:

Byte
Number

Description

0 0Bh: StrobeWriteCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
If a device is connected to the U4xx that will accept a byte of data from port A
when B.7 is toggled from high to low and back to high, then the following
commands would write 55h to this device.

First set the B.7 line high with a SetBitCmd command: 07-0F-00-00-00-00-00-00
The line is set high to begin with because the strobe commands do not initialize the
state or direction of the line. (B.7 needs to be set as an output.)

Then write to port A and toggle B.7 low, then high. 0B-55-00-0F-00-00-00-00 The
breakdown of the first four bytes of the command is: 0Bh - StrobeWriteCmd, 55h -
data to write, 00h - port to write (A), 0Fh - line to toggle (-F) and toggle direction
(0-).

Changing to a positive strobe would necessitate changing the initial line value, and
substituting 1Fh for the fourth byte.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeRead

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeRead

StrobeRead - Read 8 bits from a port and
strobe a control line

Description:
This is a function that strobes the read of a byte value from a port. This command
selects port A or B for the read byte, as well as a polarity (negative or positive) and
a line (A.0 - B.7) to toggle. The line is toggled to one state, the byte is read, and
then the line is returned to the initial state.

Command Syntax: (USBm.dll)
USBm_StrobeRead(device, dataarray, port, sel)

The USBm_StrobeRead function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray
A byte array where the returned data will be stored. Minimum size of the
array must be 1 byte

port The port for the byte read. A value of 00h is port A, a value of 01h is port
B.

sel The strobe direction and the strobe line selection.

Remarks:
Bit/Line Selection

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

With sel set to the Bit/Line Selection values, the strobe is negative-going. By
adding 10h to this value, the strobe will be positive-going. For example: 18h would
pulse B.0 from low to high, and back low.

VB Declaration
Public Declare Function USBm_StrobeRead _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte, _
 ByVal port As Byte, _
 ByVal sel As Byte) _
 As Integer

VB Example
Dim dataarray(1) As Byte
 USBm_StrobeRead 1, dataarray(0), 0, &H0F

If a device is connected to the U4xx that will send a byte of data to port A when
D15 is toggled from high to low and back to high, then the following commands
would read this device.

First set the B.7 line high with USBm_SetBit. The line is set high to begin with
because the strobe functions do not initialize the state or direction of the line. (B.7
needs to be set as an output.)

Then toggle B.7 low, read from port A, and toggle B.7 high. The breakdown of the
first four bytes of the command is: 1 - device, dataarray(0) - variable to contain
result, 0 - port to read (A), &H0F - line to toggle (-F) and toggle direction (0-).

Changing to a positive strobe would necessitate changing the initial line value, and
substituting &H1F for the fourth byte.

C Prototype
int USBm_StrobeRead(unsigned char device, unsigned char *data,
unsigned char port, unsigned char sel);

C Example

RobotBASIC
usbm_StrobeRead(ne_DeviceNumber,se_ByteData)

Returns a byte value of data read from a port based on a strobing line and timing.
the byte data string specifies the setup and so forth.

Raw Command
See StrobeRead2

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeRead2

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeRead2

StrobeRead2 - Read 8 bits from a port
and strobe a control line

VERSION 1.34+ of the firmware, VERSION 42+ of the DLL

Description:
StrobeRead with strobe pulse length.

Command Syntax: (USBm.dll)
USBm_StrobeRead2(device, dataarray, port, sel, len)

The USBm_StrobeRead2 function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray
A byte array where the returned data will be stored. Minimum size of the
array must be 1 byte

port The port for the byte read. A value of 00h is port A, a value of 01h is port
B.

sel The strobe direction and the strobe line selection.

len The strobe length.

del
The delay between multiple bytes. VERSION 1.46+ of the firmware,
VERSION 56+ of the DLL

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Remarks:
Same as StrobeRead, but "len" is the strobe length from about 10 microseconds to
about 200 microseconds. The value of "del" is the delay between bytes.

VB Declaration
Public Declare Function USBm_StrobeRead2 _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte, _
 ByVal port As Byte, _
 ByVal sel As Byte, _
 ByVal len As Byte) _
 ByVal del As Byte) _
 As Integer

VB Example
Dim dataarray(1) As Byte
 USBm_StrobeRead2 1, dataarray(0), 0, &H0F, 20, 40

The "20" selects a longer strobe pulse, th 40 is a greater delay between bytes.

C Prototype
int USBm_StrobeRead2(unsigned char device, unsigned char *data,
unsigned char port, unsigned char sel, unsigned char len, unsigned
char del);

C Example

RobotBASIC

Raw Command Format:

Byte
Number

Description

0 0Ch: StrobeReadCmd

1 <not used>

2 Port to write data

3 Negative/Positive strobe selection and strobe line selection

4 Strobe pulse length VERSION 1.38+ of the firmware

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is not used. Byte 2 indicates the port to write
the byte. A value of 00h is port A, a value of 01h is port B.

Byte 3 contains the strobe direction and the strobe line selection.

Byte 4 contains a delay to lengthen the strobe. Valid values from 00h - FFh (0 -
255).

Byte 5 through byte 7 are unused.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

With Byte 3 set to the Bit/Line Selection values, the strobe is negative-going. By
adding 10h to this value, the strobe will be positive-going. For example: 18h would
pulse B.0 from low to high, and back low.

Raw Command Response Format:

Byte
Number

Description

0 0Ch: StrobeReadCmd

1 Byte value read

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the value read. Byte 2 through byte
7 are unused.

Raw Command Example Usage:
If a device is connected to the U4xx that will send a byte of data to port A when
B.7 is toggled from high to low and back to high, then the following commands
would read this device.

First set the B.7 line high with a SetBitCmd command: 07-0F-00-00-00-00-00-00
The line is set high to begin with because the strobe commands do not initialize the
state or direction of the line. (B.7 needs to be set as an output.)

Then toggle B.7 low, read from port A, and toggle B.7 high. 0B-00-00-0F-00-00-
00-00 The breakdown of the first four bytes of the command is: 0Bh -
StrobeWriteCmd, 00h - not used, 00h - port to read (A), 0Fh - line to toggle (-F)

and toggle direction (0-).

Changing to a positive strobe would necessitate changing the initial line value, and
substituting 1Fh for the fourth byte.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeWrites

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeWrites

StrobeWrites - Write 8 bit bytes to a port
and strobe a control line

VERSION 1.34+ of the firmware, VERSION 42+ of the DLL

Description:
Strobe write of a 1 to 6 byte value to a port. This command uses port A or B for the
written byte, as well as a polarity (negative or positive) and a line (A.0 - B.7) to
toggle based on the previously executed StrobeWrite or StrobeRead call.

Command Syntax: (USBm.dll)
USBm_StrobeWrites(device, countarray, dataarray)

The USBm_StrobeWrites function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

countarray
Byte array with the number of bytes (1-6) to send, and where the
returned number of bytes will be stored. Minimum size of the array must
be 1 byte

dataarray
Data to send. A byte array where the transmitted/received data will be
stored. Minimum size of the array must be 6 byte

Remarks:
Control this command's port for the byte, polarity and strobe line by using the
StrobeWrite or StrobeRead call.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Declaration
Public Declare Function USBm_StrobeWrites _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef countarray As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
 Dim countarray(1) As Byte
 Dim dataarray(6) As Byte
 countarray(0) = &H03
 dataarray(0) = &H55
 USBm_StrobeWrites 6, countarray(0), dataarray(0)

Control this command's port for the written byte, polarity and strobe line by using
the StrobeWrite or StrobeRead call. This command will then use the same selected
port, polarity, and strobe line to write three bytes from dataarray to device number
six.

C Prototype
int USBm_StrobeWrites(unsigned char device, unsigned char *count,
unsigned char *data);

C Example

RobotBASIC
usbm_StrobeWrites(ne_DeviceNumber,se_ByteData)

Returns true if successfull, false otherwise. Writes multiple bytes (1 to 6) to a port
based on a strobing line and timing. the byte data string specifies the setup and the
data to be written.

Raw Command Format:

Byte Description

Number

0 0Dh: StrobeWritesCmd

1 Number of Bytes (1-6)

2 Byte 1

3 Byte 2

4 Byte 3

5 Byte 4

6 Byte 5

7 Byte 6

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the number of data bytes to write.

Byte 2 through byte 7 are the data bytes.

Raw Command Response Format:

Byte
Number

Description

0 0Dh: StrobeWriteCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
Control this command's port for the written byte, polarity and strobe line by using
the StrobeWriteCmd or StrobeReadCmd. This command will then use the same
selected port, polarity, and strobe line to write up to 6 bytes.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

StrobeReads

Online Development Notebook > Index > Programming Overview > Device Commands >
StrobeReads

StrobeReads - Read 8 bit bytes from a
port and strobe a control line

VERSION 1.34+ of the firmware, VERSION 42+ of the DLL

Description:
Strobe read of a 1 to 6 byte value from a port. This command uses port A or B for
the byte read, as well as a polarity (negative or positive) and a line (A.0 - B.7) to
toggle based on the previously executed StrobeWrite or StrobeRead call.

Command Syntax: (USBm.dll)
USBm_StrobeReads(device, countarray, dataarray)

The USBm_StrobeReads function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

countarray
And array of number of bytes (1-6) to receive. Minimum size of the array
must be 1 byte

dataarray A byte array where the received data will be stored. Minimum size of the
array must be 6 byte

Remarks:
Control this command's port for the byte, polarity and strobe line by using the
StrobeWrite or StrobeRead call.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Declaration
Public Declare Function USBm_StrobeReads _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef countarray As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
 Dim countarray(1) As Byte
 Dim dataarray(6) As Byte
 countarray(1) = &H04
 dataarray(0) = &H55
 USBm_SPIMaster 6, countarray(0), dataarray(0)

Control this command's port for the byte, polarity and strobe line by using the
StrobeWrite or StrobeRead call. This command will then use the same selected
port, polarity, and strobe line to read four bytes from device number six and store
in dataarray.

C Prototype
int USBm_StrobeReads(unsigned char device, unsigned char *count,
unsigned char *data);

C Example

RobotBASIC
usbm_StrobeReads(ne_DeviceNumber,se_ByteData)

Returns a string of byte data read from a port based on a strobing line and timing.
the byte data string specifies the setup and so forth.

Raw Command Format:

Byte
Number

Description

0 0Eh: StrobeReadCmd

1 Number of Bytes (1-6)

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the number of data bytes to read.

Byte 2 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 0Eh: StrobeReadCmd

1 <not used>

2 Byte value read

3 Byte value read

4 Byte value read

5 Byte value read

6 Byte value read

7 Byte value read

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 is unused. Byte 2 through byte 7 contain the
data read.

Raw Command Example Usage:
Control this command's port for the byte, polarity and strobe line by using the
StrobeWriteCmd or StrobeReadCmd. This command will then use the same selected
port, polarity, and strobe line to read up to 6 bytes.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

ReadLatches

Online Development Notebook > Index > Programming Overview > Device Commands >
ReadLatches

ReadLatches - Read internal pin-change
latches

VERSION 3.35+ of the firmware, VERSION 65+ of the DLL

Description:
This is a function to return the values of the internal pin-change latches. After
reading changed latches the latches are reset.

Command Syntax: (USBm.dll)
USBm_ReadLatches(device, dataarray)

The USBm_ReadLatches function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray A byte array where the returned data will be stored. Minimum size of the
array must be 4 bytes

Remarks:
Byte 0 and 2 of the modified array contain the latched value for a bit transition
from 0xFF on port A (B) to any other value. If your port is pulled high with resistors
(external or internal) and a button press pulls the pin low then these are the bytes
to use. If your port is normally low and a button press sets a line high, then the
latch data returned in bytes 1 and 3 are the appropriate bytes.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Declaration
Public Declare Function USBm_ReadLatches _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte)_
 As Integer

VB Example
Dim dataarray(4) As Byte
 USBm_ReadLatches 3, dataarray(0)

This code fragment addresses U4x1 device #3, and reads the latches into data
array "dataarray".

C Prototype
int USBm_ReadLatches(unsigned char device, unsigned char * data);

C Example
unsigned char dataarray[4];
USBm_ReadLatches(3, *dataarray);

This code fragment addresses U4x1 device #3, and reads the latches into data
array "dataarray".

RobotBASIC

Raw Command Format:

Byte
Number

Description

0 0Fh: ReadLatches

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 0Fh: ReadLatches

1 Port A normally pulled high.

2 Port A normally pulled low.

3 Port B normally pulled high.

4 Port B normally pulled low.

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 and 3 contain the latched value for a bit
transition from 0xFF on port A (B) to any other value. If your port is pulled high
with resistors (external or internal) and a button press pulls the pin low then these
are the bytes to use. If your port is normally low and a button pres sets a line high,
then the latch data returned in bytes 2 and 4 are the appropriate bytes.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

InitLCD

Online Development Notebook > Index > Programming Overview > Device Commands > InitLCD

InitLCD - Set up the device to use an LCD

Description:
This is a function that initializes LCD variables. This includes the selection of the
lines used for RW, RS, E and the port used for data. RW, RS, and E are reset. These
commands are appropriate for HD44780 devices and devices that are compatible.

Command Syntax: (USBm.dll)
USBm_InitLCD(device, sel, port)

The USBm_InitLCD function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

sel Selection of the RW line in the higher nibble, and the RS line in the lower
nibble.

port
Selection of the LCD data port in the higher nibble, and the E line in the
lower nibble. A value of 0-h is port A, a value of 1-h is port B.

Remarks:
Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

VB Declaration
Public Declare Function USBm_InitLCD _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal sel As Byte, _
 ByVal port As Byte) _
 As Integer

VB Example
USBm_InitLCD 2, &H89, &H0A

This code fragment will select port A for the data lines to the LCD, B.0 for the RW
line, B.1 for the RS line, and B.2 for the E line.

C Prototype
int USBm_InitLCD(unsigned char device, unsigned char sel, unsigned
char port);

C Example

RobotBASIC
usbm_InitLCD(ne_DeviceNumber,ne_Sel, ne_Port)

Returns true if successfull, false otherwise. It specifies the port to use for the data
port and the pins to use for the R/W, RS, and E lines for controlling an LCD.

Raw Command Format:

Byte
Number

Description

0 10h: InitLCDCmd

1 RW line selection, RS line selection

2 Data port, E line selection

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 selects the RW line in the higher nibble, and
the RS line in the lower nibble. Byte 2 selects the port to write the byte in the
higher nibble, and the E line in the lower nibble. A value of 0-h is port A, a value of
1-h is port B. Byte 3 through byte 7 are unused.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Affect A.0 08h Affect B.0

01h Affect A.1 09h Affect B.1

02h Affect A.2 0Ah Affect B.2

03h Affect A.3 0Bh Affect B.3

04h Affect A.4 0Ch Affect B.4

05h Affect A.5 0Dh Affect B.5

06h Affect A.6 0Eh Affect B.6

07h Affect A.7 0Fh Affect B.7

Raw Command Response Format:

Byte
Number

Description

0 10h: InitLCDCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
The command 10-89-0A-00-00-00-00-00 will select port A for the data lines to the
LCD, B.0 for the RW line, B.1 for the RS line, and B.2 for the E line.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

LCDCmd

Online Development Notebook > Index > Programming Overview > Device Commands > LCDCmd

LCDCmd - Send a command to the LCD

Description:
This is a function that writes a command to the LCD. The RS, RW, E lines and the
data port are selected by the InitLCDCmd. The data byte is written to the selected
port and the control lines are set appropriately. The E line is toggled for five to
eight microseconds.

Command Syntax: (USBm.dll)
USBm_LCDCmd(device, data)

The USBm_LCDCmd function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data The value to transfer to the LCD command register.

Remarks:

VB Declaration
Public Declare Function USBm_LCDCmd _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte) _
 As Integer

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
USBm_LCDCmd 2, &H33

This code fragment will write the command byte of &H33 to the LCD command
register connected to device 2.

C Prototype
int USBm_LCDCmd(unsigned char device, unsigned char data);

C Example

RobotBASIC
usbm_LCDCmd(ne_DeviceNumber,ne_CommandByte)

Returns true if successfull, false otherwise. Sends a command code to the LCD.

Raw Command Format:

Byte
Number

Description

0 11h: LCDCmdCmd

1 Byte Data

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the data to transfer to the LCD command
register. Byte 2 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 11h: LCDCmdCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
11-33-00-00-00-00-00-00 will write the command byte of 33h to the LCD
command register.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

LCDData

Online Development Notebook > Index > Programming Overview > Device Commands > LCDData

LCDData - Send a character to the LCD

Description:
This is a function that writes a character to the LCD. The RS, RW, E lines and the
data port are selected by the InitLCDCmd. The data byte is written to the selected
port and the control lines are set appropriately. The E line is toggled for five to
eight microseconds.

Command Syntax: (USBm.dll)
USBm_LCDData(device, data)

The USBm_LCDData function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data The value to transfer to the LCD data register.

Remarks:

VB Declaration
Public Declare Function USBm_LCDData _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte) _
 As Integer

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

VB Example
USBm_LCDData 2, 'H'

This code fragment will write the command byte of "H" to the LCD display
connected to device 2.

C Prototype
int USBm_LCDData(unsigned char device, unsigned char data);

C Example

RobotBASIC
usbm_LCDData(ne_DeviceNumber,ne_DataByte)

Returns true if successfull, false otherwise. Sends a data byte to the LCD.

Raw Command Format:

Byte
Number

Description

0 12h: LCDDataCmd

1 Byte Data

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the character to transfer to the LCD
display. Byte 2 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 12h: LCDDataCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
12-42-00-00-00-00-00-00 will display a 'B' on the LCD.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

InitSPI

Online Development Notebook > Index > Programming Overview > Device Commands > InitSPI

InitSPI - Set up the device to use SPI (3-
wire interface)

Description:
This is a function that sets the SPI subsystem attributes and the direction of the
SPI lines. The SPI subsystem can be either a SPI master or a SPI slave. The
InitSPICmd command sets the port lines appropriately for selection of either master
or slave. Clock frequency, polarity, and phase are also set. SPI bytes are sent out
MSB first. The SPI master clock can operate at up to 2 Mbits/s in master mode.

Command Syntax: (USBm.dll)
USBm_InitSPI(device, data)

The USBm_InitSPI function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data SPI subsystem attribute data.

Remarks:
The direction of the SPI port lines (A.5-MOSI, A.6-MISO, A.7-SCK, and, in the case
of SPI slave operation, A.4-SS) is set based on the command to set the SPI
subsystem to either master or slave.

When set as a master SPI device, A.5-MOSI and A.7-SCK are set as outputs. A.6-
MISO is set to input. A.4-SS is unaffected.

When set as a slave SPI device, A.5-MOSI, A.7-SCK, and A.4-SS are set as inputs.
A.6-MISO is set to output.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Turning off the SPI subsystem with the InitSPICmd command will still set the port
direction of the SPI port lines as a SPI master. If you wish to turn off the SPI and
use the SPI port lines, issue a DirectionACmd command after the InitSPICmd
command.

The format of the data byte written to control the SPI subsystem attributes is
divided into bit fields.

Bits 1 and 0 control the clock frequency: (applicable to the master mode)

00 = 2 Mbits/s

01 = 1 Mbits/s

10 = 500,000 bits/s

11 = 62,500 bits/s.

Bits 3 and 2 control the clock polarity and phase:

00 = clock starts/idles low, data sampled on falling edge (common SPI
name: Mode 1)

01 = clock starts/idles low, data sampled on rising edge (common SPI
name: Mode 0)

10 = clock starts/idles high, data sampled on rising edge (common SPI
name: Mode 3)

11 = clock starts/idles high, data sampled on falling edge. (common SPI
name: Mode 2)

Bits 5 and 4 control the SPI mode:

00 = SPI disabled

01 = SPI master

10 = SPI slave

11 should not be used.

Bits 7 and 6 should be written as 00.

Operation:
The U4x1 has a six byte buffer for SPI slave interaction. The SPI Slave Write
command (from the PC host) places six bytes of data into this buffer. (Depending
on the application, less than six bytes may be valid for that app.) These six bytes
are the bytes that the PC host will transfer to the SPI master when the SPI master
communicates. The index byte of the SPI Slave Write command, if set to 0, points
to the first byte of the buffer as being the first byte to transmit to the master. Use
only 0 for this revision of firmware.

The host command SPI Slave Read command returns the contents of this six byte
buffer.

The SPI master selects the SPI subsystem by bringing SS low. This allows SPI
transfer from the master. The master transfers a byte into the U4x1, and receives
the first byte in the buffer. The byte sent by the master moves into the first position

of the buffer. In this way the buffer contents, from one to six bites, are moved to
the master and replaced by the bytes sent by the master. No more than six bytes
should be transmitted, as the buffer is only six bytes long. More bytes than this will
result in data loss. The master should deselect the SPI subsystem by bringing SS
high.

At this point the host PC should read the buffer (SPI Slave Read) and process the
data. A SPI Slave Write will load additional data to the U4x1 and reset the index
pointer to the start of the six byte buffer.

To optimize the transfer of data from the SPI master handshaking should be
implemented using normal port I/O lines to indicate that the U4x1 is available for
another access. This implementation will, naturally, be dependent on the
application. The complexities of the handshake specific to the application as well as
restrictions of the OS will determine the rate of data transfer.

VB Declaration
Public Declare Function USBm_InitSPI _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal data As Byte) _
 As Integer

VB Example
USBm_InitSPI 6, &H10

This code fragment will initialize the SPI as a master, at 2 Mbits/s, and with the
clock starting low and data valid on the falling edge.

C Prototype
int USBm_InitSPI(unsigned char device, unsigned char data);

C Example

RobotBASIC
usbm_InitSPI(ne_DeviceNumber,ne_Specs)

Returns true if successfull, false otherwise. It sets the attributes of the SPI system.

Raw Command Format:

Byte
Number

Description

0 14h: InitSPICmd

1 Byte Data

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the SPI subsystem attribute data. Byte 2
through byte 7 are unused.

The direction of the SPI port lines (A.5-MOSI, A.6-MISO, A.7-SCK, and, in the case
of SPI slave operation, A.4-SS) is set based on the command to set the SPI
subsystem to either master or slave.

When set as a master SPI device, A.5-MOSI and A.7-SCK are set as outputs. A.6-
MISO is set to input. A.4-SS is unaffected.

When set as a slave SPI device, A.5-MOSI, A.7-SCK, and A.4-SS are set as inputs.
A.6-MISO is set to output.

Turning off the SPI subsystem with the InitSPICmd command will still set the port
direction of the SPI port lines as a SPI master. If you wish to turn off the SPI and
use the SPI port lines, issue a DirectionACmd command after the InitSPICmd
command.

The format of the data byte written to control the SPI subsystem attributes is
divided into bit fields.

Bits 1 and 0 control the clock frequency: (applicable to the master mode)

00 = 2 Mbits/s

01 = 1 Mbits/s

10 = 500,000 bits/s

11 = 62,500 bits/s.

Bits 3 and 2 control the clock polarity and phase:

00 = clock starts/idles low, data sampled on falling edge (common SPI
name: Mode 1)

01 = clock starts/idles low, data sampled on rising edge (common SPI
name: Mode 0)

10 = clock starts/idles high, data sampled on rising edge (common SPI
name: Mode 3)

11 = clock starts/idles high, data sampled on falling edge. (common SPI
name: Mode 2)

Bits 5 and 4 control the SPI mode:

00 = SPI disabled

01 = SPI master

10 = SPI slave

11 should not be used.

Bits 7 and 6 should be written as 00.

Raw Command Response Format:

Byte
Number

Description

0 14h: InitSPICmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
14-10-00-00-00-00-00-00 will initialize the SPI as a master, at 2 Mbits/s, and with
the clock starting low and data valid on the falling edge.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

SPIMaster

Online Development Notebook > Index > Programming Overview > Device Commands > SPIMaster

SPIMaster - Communicate with
(read/write) a SPI device

Description:
This is a function that is used to communicate with a slave SPI device. Zero to six
bytes can be transferred in a single command. For each byte sent to a SPI slave
device, a byte is returned. The returned bytes are in the response to the command

Command Syntax: (USBm.dll)
USBm_SPIMaster(device, countarray, dataarray)

The USBm_SPIMaster function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

countarray
A data array to hold the number of bytes received (sent). Minimum array
size of 1.

dataarray The function causes this array of variables to be changed to the data
received from the SPI transfer. Minimum array size of 6.

Remarks:
When the InitSPI function sets the SPI subsystem to be a master, only the SPI lines
SCK, MISO, and MOSI are configured. A SPI device needs to be addressed with a
slave select signal. Any remaining line of the U4xx can be set to be an output that
controls the slave device SS input.

The slave must be selected prior to issuing the USBm_SPIMaster command and
deselected afterward.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

SPI will send out a byte and receive a byte at the same time. As the first clock
pulse becomes valid, one bit of the output byte will appear on MOSI, while the
state of MISO is shifted in to the U4x1. Another clock pulse, another MOSI bit
shifted out, another MISO bit shifted in. After 8 clock pulses one byte is out from
the master to the slave, one is shifted in from the slave to the master.

If you only need to shift bytes in, you can write "dummy" bytes out.

VB Declaration
Public Declare Function USBm_SPIMaster _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef countarray As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
 Dim dataarray(6) As Byte
 Dim countarray(1) As Byte
 dataarray(0) = &H55
 countarray(0) = &H01
 USBm_SPIMaster 0, countarray(0), dataarray(0)

The slave must be selected (perhaps an active low CS) prior to issuing the
SPIMaster function and deselected afterward.

This code fragment will shift a single byte (55h) out the SPI port.

C Prototype
int USBm_SPIMaster(unsigned char device, unsigned char *count,
unsigned char *data);

C Example

RobotBASIC
usbm_SPIMaster(ne_DeviceNumber,se_DataBytes)

Returns a string of byte values inputted from the SPI master after it has read the
corresponding number of bytes from the data string. Use ArrayStr() to extract the
byte values and Char() to create the data string.

Raw Command Format:

Byte
Number

Description

0 15h: SPIMasterCmd

1 Number of Bytes (0-6)

2 Byte Data

3 Byte Data

4 Byte Data

5 Byte Data

6 Byte Data

7 Byte Data

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the number of bytes to send. The
number of bytes can 0 to 6. Byte 2 through byte 7 are the transmitted bytes.

Raw Command Response Format:

Byte
Number

Description

0 15h: SPIMasterCmd

1 Number of Bytes (0-6)

2 Byte Data

3 Byte Data

4 Byte Data

5 Byte Data

6 Byte Data

7 Byte Data

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the number of bytes received
(sent). Byte 0 through byte 7 contain the received data.

Raw Command Example Usage:
When the InitSPICmd command sets the SPI subsystem to be a master, only the
SPI lines SCK, MISO, and MOSI are configured. A SPI device needs to be addressed
with a slave select signal. Any remaining line of the U401 can be set to be an
output that controls the slave device SS input.

The slave must be selected prior to issuing the SPIMasterCmd command and
deselected afterward.

Issuing 15-01-55-00-00-00-00-00 will shift a single byte (55h) out the SPI port.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

SPISlaveWrite

Online Development Notebook > Index > Programming Overview > Device Commands >
SPISlaveWrite

SPISlaveWrite - Write bytes for a SPI
master to read

Description:
This is a function that transfers bytes to the slave SPI buffer. This buffer holds the
data that will be transferred to the master SPI device, when that device requests
the data. A maximum of six bytes will fit in this buffer.

Command Syntax: (USBm.dll)
USBm_SPISlaveWrite(device, index, dataarray)

The USBm_SPISlaveWrite function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

index Index to the data. A value of 0 indicates that the first buffer byte will be
the first byte read by the master.

dataarray
The function will transmit this array to the SPI master device when
commanded by that device. Minimum array size of 6.

Remarks:
When the U4xx is operated as a slave device, an external master can read the data
placed into the SPI buffer. If 11, 22, 33, 44, 55, 66 is written to the SPI buffer, then
the master can read the first buffer byte (11h) when it transfers a byte to the
U401. The second SPI master transfer will read 22h.

Port A bit 4 (pin 19 for the U401) has a special purpose when the U401 is used in
SPI slave mode. The pin becomes an input when the U401 is configured to ba a

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

slave. The function of the pin is "SS", an active low slave select. SS behaves much
like the slave selects (or chip selects) of SPI devices (an EEPROM, for example).
Initializing the SPI subsystem also takes care of setting the port direction for the
SPI pins. The SPI initialization should come after the port direction init. The master
SPI device should select the U401 by bringing this line low.

VB Declaration
Public Declare Function USBm_SPISlaveWrite _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal index As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
Dim dataarray(6) As Byte
 dataarray(0) = &H11
 dataarray(1) = &H22
 dataarray(2) = &H33
 dataarray(3) = &H44
 dataarray(4) = &H55
 dataarray(5) = &H66

 USBm_SPISlaveWrite 6, 0, dataarray(0)

When the U4xx is operated as a slave device, an external master can read the data
placed into the SPI buffer. If this finction is called to write to the SPI buffer, then
the master can read the first buffer byte (11h) when it transfers a byte to the
U4xx. The second SPI master transfer will read 22h.

Port A bit 4 (pin 19 for the U401, pin 24 for the U421) has a special purpose when
the U4x1 is used in SPI slave mode. The pin becomes an input when the U4x1 is
configured to ba a slave. The function of the pin is "SS", an active low slave select.
SS behaves much like the slave selects (or chip selects) of SPI devices (an
EEPROM, for example). Initializing the SPI subsystem also takes care of setting the
port direction for the SPI pins. The SPI initialization should come after the port
direction init. The master SPI device should select the U4x1 by bringing this line
low.

C Prototype
int USBm_SPISlaveWrite(unsigned char device, unsigned char index,
unsigned char *data);

C Example

RobotBASIC
usbm_SPISlaveWrite(ne_DeviceNumber,se_DataBytes)

Returns true if successfull, false otherwise. Writes 1 to 6 bytes to the SPI slave
buffer. The length of the data string determines the number of bytes written. Use
Char() to create the data string.

Raw Command Format:

Byte
Number

Description

0 16h: SPISlaveCmd

1 Data Index (0-5)

2 Byte Data

3 Byte Data

4 Byte Data

5 Byte Data

6 Byte Data

7 Byte Data

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the index to the data. A value of 0
indicates that the first buffer byte, at location 2, will be the first byte read by the
master. Byte 2 through byte 7 contain the data to be read by the SPI master.

Raw Command Response Format:

Byte
Number

Description

0 16h: SPISlaveCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Raw Command Example Usage:
When the U4xx is operated as a slave device, an external master can read the data
placed into the SPI buffer. If 16-00-11-22-33-44-55-66 is written to the SPI buffer,
then the master can read the first buffer byte (11h) when it transfers a byte to the
U401. The second SPI master transfer will read 22h.

Port A bit 4 (pin 19 for the U401, pin 24 for the U421) has a special purpose when
the U401/U421 is used in SPI slave mode. The pin becomes an input when the
U401 is configured to ba a slave. The function of the pin is "SS", an active low slave
select. SS behaves much like the slave selects (or chip selects) of SPI devices (an
EEPROM, for example). Initializing the SPI subsystem also takes care of setting the
port direction for the SPI pins. The SPI initialization should come after the port
direction init. The master SPI device should select the U4x1 by bringing this line
low.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

SPISlaveRead

Online Development Notebook > Index > Programming Overview > Device Commands >
SPISlaveRead

SPISlaveRead - Read bytes sent by a SPI
master

Description:
This is a function that transfers bytes from the slave SPI buffer. This buffer holds
the data transferred from the master SPI device, when that device sends data. A
maximum of six bytes will fit in this buffer.

Command Syntax: (USBm.dll)
USBm_SPISlaveRead(device, countarray, dataarray)

The USBm_SPISlaveRead function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

countarray An array of the count of bytes sent by the SPI master. Minimum array
size of 1.

dataarray
The function causes this array of variables to be changed to the data
received from the SPI transfer. Minimum array size of 6.

Remarks:
Reading count = 00h from the SPI buffer indicates that the master has transferred
no data. Reading count = 02h indicates that the master SPI device has transferred
2 bytes of valid data.

Port A bit 4 (pin 19 for the U401, pin 24 for the U421) has a special purpose when
the U401 is used in SPI slave mode. The pin becomes an input when the U401 is
configured to ba a slave. The function of the pin is "SS", an active low slave select.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

SS behaves much like the slave selects (or chip selects) of SPI devices (an
EEPROM, for example). Initializing the SPI subsystem also takes care of setting the
port direction for the SPI pins. The SPI initialization should come after the port
direction init. The master SPI device should select the U401 by bringing this line
low.

VB Declaration
Public Declare Function USBm_SPISlaveRead _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef countarray As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
Dim dataarray(6) As Byte
Dim countarray(1) As Byte

 USBm_SPISlaveRead 6, countarray(0), dataarray(0)

Reading a countarray(0) of 0 from the SPI buffer indicates that the master has
transferred no data.

Port A bit 4 (pin 19 for the U401) has a special purpose when the U4x1 is used in
SPI slave mode. The pin becomes an input when the U4x1 is configured to ba a
slave. The function of the pin is "SS", an active low slave select. SS behaves much
like the slave selects (or chip selects) of SPI devices (an EEPROM, for example).
Initializing the SPI subsystem also takes care of setting the port direction for the
SPI pins. The SPI initialization should come after the port direction init. The master
SPI device should select the U4x1 by bringing this line low.

C Prototype
int USBm_SPISlaveRead(unsigned char device, unsigned char *count,
unsigned char *data);

C Example

RobotBASIC
usbm_SPISlaveRead(ne_DeviceNumber)

Returns a string of byte data from the Slave buffer (maximum 6 bytes). You can
use the ArrayStr() function to extract the individual bytes.

Raw Command Format:

Byte
Number

Description

0 17h: SPISlaveCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 1 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 17h: SPISlaveCmd

1 Byte Count

2 Byte Data

3 Byte Data

4 Byte Data

5 Byte Data

6 Byte Data

7 Byte Data

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the count of bytes sent by the SPI
master. Byte 2 through byte 7 contain the data from the master SPI device.

Raw Command Example Usage:
Reading 17-00-01-02-03-04-05-06 from the SPI buffer indicates that the master
has transferred no data. Reading 17-02-01-02-03-04-05-06 indicates that the
master SPI device has transferred 2 bytes of valid data.

Port A bit 4 (pin 19 for the U401, pin 24 for the U421) has a special purpose when
the U401/U421 is used in SPI slave mode. The pin becomes an input when the
U401 is configured to ba a slave. The function of the pin is "SS", an active low slave
select. SS behaves much like the slave selects (or chip selects) of SPI devices (an
EEPROM, for example). Initializing the SPI subsystem also takes care of setting the
port direction for the SPI pins. The SPI initialization should come after the port
direction init. The master SPI device should select the U4x1 by bringing this line
low.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Wire2Control

Online Development Notebook > Index > Programming Overview > Device Commands >
Wire2Control

Wire2Control - Send a 2-wire signal to
the 2-wire port

VERSION 3.35+ of the firmware, VERSION 65+ of the DLL

Description:
This function sends a specific signal to the 2-wire port setting the data and clock
lines as defined by this command. Signals are specific patterns of setting the 2-wire
clock and data lines high or low. For I2C this command is good for initialization of
the clock and data lines, for generating a start sequence, and for making a stop
sequence.

Command Syntax: (USBm.dll)
USBm_Wire2Control(device, dataarray)

The USBm_Wire2Control function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray The "signal" for the 2-wire data and clock lines. Minimum array size of 6.

Remarks:
PA.3 is the 2-wire data line, while PA.2 is the 2-wire clock line. For 2-wire
communication these two lines are set to be open collector/drain lines. Since they
are only able to be set to zero by the U4x1 device, they must be pulled high (to 5V)
by an external resistor in order to have a high state. This is often called "active low
and passive high." For typical 2-wire communication (such as I2C) a 4700 ohm (4.7
kohm) resistor will suffice. For I2C communication the first three signal types (0, 1,
2) are useful for generating the initial I2C state, the start condition, and the stop

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

condition. For transfer of clocked bytes of data, use Wire2Data.

Signal types

0 - Set clock and data to open-drain, set data high, set clock high. (Good for I2C
initialization.)

1 - Set data high, clock high, data low, clock low. (Good for I2C start signal.)

2 - Set data low, clock high, data high. (Good for I2C stop signal.)

3 - Set clock low, data low.

4 - Set data high, clock high.

5 - Set data high

6 - Set data low.

7 - Set clock high.

8 - Set clock low.

9 - Return data line.

10 - Return clock line.

VB Declaration
Public Declare Function USBm_Wire2Control _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
Dim dataarray(8) As Byte

 dataarray(0) = 0
 USBm_Wire2Control 0, dataarray(0)

This code fragment sends a "0" signal (I2C init) to device 0.

C Prototype
int USBm_Wire2Control(unsigned char device, unsigned char *data);

C Example

RobotBASIC
-TBD-

Raw Command Format:

Byte
Number

Description

0 18h: Wire2Control

1 Signal

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the 2-wire signal for clock and data
lines. Byte 2 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 18h: Wire2Control

1 Data read from line

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the current value of either the 2-
wire data line or the 2-wire clock line for the signals that return data. Byte 2
through byte 7 are unused.

Raw Command Example Usage:
-TBD-

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Wire2Data

Online Development Notebook > Index > Programming Overview > Device Commands > Wire2Data

Wire2Data - Send 2-wire data (8 or 9
bits) to the 2-wire port, receive data

VERSION 3.35+ of the firmware, VERSION 65+ of the DLL

Description:
This function sends data to the 2-wire port. Eight bits of data are clocked out the 2-
wire port. The 2-wire data line toggles to match the bits in the command as the
clock line pulses high. Optionally a 9th data bit can be sent. For I2C this command
is good for transmitting/receiving a byte (8 bits) of data, as well as an optional
'ACK' bit.

Command Syntax: (USBm.dll)
USBm_Wire2Data(device, dataarray)

The USBm_Wire2Data function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray
A byte array that contains the specific settings of this command, the data
to send, and the data received. The minimum size of this array must be 6
bytes.

Remarks:
Data is shifted onto the 2-wire data line most-significant bit first. The data bit is set
on the data line, the clock line is set high. The data line is read (the device that you
are communicating with may be pulling that line low) and the clock line is set low.
The 8 bits of the data byte are sent this way. The 9th bit would be sent after the
data byte is finished. The 9th bit is optional.

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

The data array contains data for this command. Byte 0 is set to 0. Byte 1 bit 0 of
the array is the value (1 or 0) of the 9th bit. Byte 1 bit 1 is a bit that suppresses
9th bit if set to 1, but allows the 9th bit of set to 0. The 9th bit is often used in I2C
communication as the 'ACK' bit. Byte 2 of the data array is the 8 bits of data to
send in the command.

After completion of this command, byte 0 of the array will contain the 8-bit value
read from the 2-wire data port. Byte 1 bit 0 will contain the value of the 9th bit.

Performing a read of the 2-wire bus is done by setting the byte value to all 1. (FFh
or 0xFF) This is essentially writing 1s to the data line, which in the open
collector/drain hardware configuration of the 2-wire bus lines will let the 2-wire
device that you are talking to pull the lines low for the 0s that it wishes to transmit.

VB Declaration
Public Declare Function USBm_Wire2Data _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte) _
 As Integer

VB Example
Dim dataaray(8) As Byte

 dataarray(0) = 0
 dataarray(1) = 1
 dataarray(2) = &H10
 USBm_Wire2Data 0, dataarray(0)

This code fragment sends a byte of value 10h to device 0, plus the 9th bit set as 1.
Dataarray(0) will contain the value read from the bus, which will be the 10h sent,
unless there is bus contention. Bit 0 of dataarray(1) will have the value of the 9th
bit. A 1 was sent for this bit, and the returned 9th bit will be a 1, unless the 2-wire
device pulled that bit to a 0.

C Prototype
int USBm_Wire2Data(unsigned char device, unsigned char *dataarray);

C Example

RobotBASIC
-TBD-

Raw Command Format:

Byte
Number

Description

0 19h: Wire2Data

1 00h

2 Bit 0: State of the 9th bit. Transmitting a 0 will pull the 2-wire data line to
ground. Transmitting a 1 will allow that line to float high, or be pulled to
ground by the 2-wire device.
 Bit 1: 9th bit suppression. Setting this bit to 1 stops the 9th bit. (Only 8 bits
transmitted) Setting the bit to 0 allows the 9th bit to be sent.

3 Byte (8 bits) of data to shift onto the data line.

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains 00h. Byte 2, bit 0 is the value for
the 9th bit. Byte 2 bit 1 controls the 9th bit - set to 0 to transmit the 9th bit. Byte 3
is the data byte to shift out the 2-wire bus. Byte 4 through byte 7 are unused.

Raw Command Response Format:

Byte
Number

Description

0 19h: Wire2Data

1 Data read from line

2 Bit 0: The value of the 9th bit

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 contains the byte read from the 2-wire bus.
Byte 2 contains the value of the 9th bit. Byte 3 through byte 7 are unused.

Raw Command Example Usage:
-TBD-

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Stepper

Online Development Notebook > Index > Programming Overview > Device Commands > Stepper

Stepper - Set up / control a stepper
motor

VERSION 1.20+ of the firmware

Description:
This is a USBm.dll function that controls the two channels of stepper motor digital
signals.

Please note: The stepper motor capabilities of the U401/U421 provide the digital
level control signals for stepper motor driver interfacing. Driver circuitry is required
between the U4x1 and the stepper motor - the U4x1 device can not provide the
current/voltage required to directly drive a stepper motor. Please see the
application notes for more information.

Command Syntax: (USBm.dll)
USBm_Stepper(device, channel, enable, direction, type, initial, rate)

The USBm_Stepper function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

channel Stepper channel that this command controls. The U4x1 has two stepper
channels, this value can only be 01h or 02h.

enable

Enables the pattern output on the pins associated with the channel. 1h
would enable that channel to cycle through the stepper sequence, 0h
would stop the sequence. The initial value for the sequence is accepted
only when this byte is 0h.

direction Direction of the step sequence, and thus the direction of the motor
travel. The actual direction depends on motor wiring. Valid values are 0h

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

and 1h.

type
Step type. Should be set to 1h for wave stepping and full stepping, and
set to 0h for half stepping.

initial
Initial state of the stepper pattern. This should only be set to 3h, for Full
and Half stepping, and to 1h for wave stepping. The initial value is only
transfered when enable is 0 (disabled).

rate Step rate (time between stepper pattern changes). The actual rate is this
value times 128 microseconds.

steps
Number of steps. FFh is continuous, 00h is off. VERSION 1.50+ of the
firmware, VERSION 60+ of the DLL

Remarks:
This command does not set the port direction pins. Therefore a DirectionA would be
required to set the correct port pins to be outputs.

Stepper Channel 1 controls the lower nibble of port A. Port A.0, A.1, A.2, A.3.

Stepper Channel 2 controls the upper nibble of port A. Port A.4, A.5, A.6, A.7.

The enable, direction, type, initial value, and rate apply to each channel, such that
two steppers can run in different directions and at different rates.

VB Declaration
Public Declare Function USBm_Stepper _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByVal channel As Byte, _
 ByVal enable As Byte, _
 ByVal direction As Byte, _
 ByVal steptype As Byte, _
 ByVal initial As Byte, _
 ByVal steprate As Byte) _
 As Integer

VB Example
USBm_Stepper 3, 1, 0, 0, 1, 3, 50

This code fragment addresses device #3, and disables stepper channel 1. It sets
the direction (0), step type (1), initial value (3) and step rate (to 50).

C Prototype
int USBm_Stepper(unsigned char device, unsigned char channel,
unsigned char enable, unsigned char direction, unsigned char type,
unsigned char initial, unsigned char rate);

C Example
// Run the stepper motor
USBm_Stepper(3, 1, 0, 0, 1, 3, 50);

This code fragment addresses device #3, and disables stepper channel 1. It sets
the direction (0), step type (1), initial value (3) and step rate (to 50).

RobotBASIC
usbm_Stepper(ne_DeviceNumber,se_DataSpecs)

Returns true if successfull, false otherwise. The byte data string specifies the
channel and so forth.

Raw Command Format:

Byte
Number

Description

0 1Ch: StepperCmd

1 Channel - Stepper channel number. There are two available channels.

2 Control - Stepper channel control byte.

3 Rate - Stepper channel step rate.

4 Steps - number of steps VERSION 1.50+ of the firmware, VERSION
60+ of the DLL

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the channel that this command
controls. The U4x1 has two stepper channels, this value can only be 01h or 02h.

Byte 2 is the stepper control byte. The format of this byte is divided into bit fields.

Bits 3, 2, 1, and 0 are the initial state of the stepper pattern. These bits should only
be set to 3h, for Full and Half stepping, and to 1h for wave stepping. The initial
value is only transfered when Bit 7 is 0 (disabled).

Bit 4 sets the step type and should be set to 1h for wave stepping and full stepping,
and set to 0h for half stepping.

Bit 6 sets the direction of the step sequence, and thus the direction of the motor
travel. The actual direction depends on motor wiring. Valid values for this bit are 0h
and 1h, naturally.

Bit 7 enables the pattern output on the pins associated with the channel. 1h would
enable that channel to cycle through the stepper sequence, 0h would stop the
sequence. The initial value for the sequence is accepted only when Bit 7 is 0h.

Byte 3 contains the step rate (time between stepper pattern changes). The actual
rate is this value times 128 microseconds.

Byte 4 contains the number of steps to execute, from 1 to 254. 00h is stop, FFh is
continous.

This command does not set the port direction pins. Therefore a DirectionACmd
would be required to set the correct port pins to be outputs.

Stepper Channel 1 controls the lower nibble of port A. Port A.0, A.1, A.2, A.3.

Stepper Channel 2 controls the upper nibble of port A. Port A.4, A.5, A.6, A.7.

The enable, direction, type, initial value, and rate apply to each channel, such that
two steppers can run in different directions and at different rates.

Raw Command Response Format:

Byte
Number

Description

0 1Ch: StepperCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Reset1Wire

Online Development Notebook > Index > Programming Overview > Device Commands >
Reset1Wire

Reset1Wire - Set up / reset a 1-wire
bus/device

VERSION 1.30+ of the firmware, VERSION 36+ of the DLL

Description:
This is a function to send a 1-wire (MicroLAN) reset pulse on the selected port pin.
This command also sets the port pin for subsequent 1-wire write and read
commands. The port pin direction is controlled by the 1-wire commands.

Command Syntax: (USBm.dll)
USBm_Reset1Wire(device, dataarray)

The USBm_Reset1Wire function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray The bit that will be affected. Minimum size of the array is 8.

Remarks:
This command sets the port direction for the selected pin.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Use A.0 as 1-wire bus 08h Use B.0 as 1-wire bus

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

01h Use A.1 as 1-wire bus 09h Use B.1 as 1-wire bus

02h Use A.2 as 1-wire bus 0Ah Use B.2 as 1-wire bus

03h Use A.3 as 1-wire bus 0Bh Use B.3 as 1-wire bus

04h Use A.4 as 1-wire bus 0Ch Use B.4 as 1-wire bus

05h Use A.5 as 1-wire bus 0Dh Use B.5 as 1-wire bus

06h Use A.6 as 1-wire bus 0Eh Use B.6 as 1-wire bus

07h Use A.7 as 1-wire bus 0Fh Use B.7 as 1-wire bus

The port pin that is selected as a 1-wire bus is configured with an internal pull-up
resistor of approximately 14k ohm. During idle bus times it is this resistor that pulls
the line high. When the U4x1 transmits a low signal on the bus, it pulls the line low
with an open collector device.

Multiple 1-wire buses can exist simultaneously on the U4x1. It is the Reset1Wire
command that sets the port configuration for a specific line, plus sets the
subsequent read/write commands to use that line.

After the function is called, "data" contains a value that indicates if any device
returns a presence pulse. If a device was detected, data will contain 00h. If no
device was detected, data will contain 01h.

The U4x1 devices support 1-wire communication with any 1-wire device. When you
select an I/O port line of the U4x1 to use as the connection to a 1-wire device, you
have changed that line from just being a digital I/O line to a 1-wire bus. The
Reset1Wire command configures the line with a 14kohm pull up resistor, and issues
a reset pulse on that line. The Reset1Wire command returns (via a pointer - see
the command description) an indication of the reception of the device presense
pulse.

If you select a particular line to use as the 1-wire bus, you do so with the
Reset1Wire command. A Read1Wire command or a Write1Wire command will
operate on the line that was last referenced by the Reset1Wire command.

What this means is that you can use all 16 lines on the U4x1 as 16 seperate 1-wire
busses. Issuing the Reset1Wire command is the way to get attention of the 1-wire
devices on that bus, prior to using the Read1Wire and Write1Wire commands to
communicate with the 1-wire device. You can use Reset1Wire to select and
communicate with one line of the U4x1, then use it again to communicate with a
different line on the U4x1.

You can use all 16 lines on the U4x1 to communicate with 16 1-wire devices, one
per line. But you can also have multiple 1-wire devices on each line, and address
them individually by using their ROM serial numbers. The 1-wire device
documentation contains the details that you need to communicate with 1-wire
devices.

The internal 14kohm pull up resistor will suffice for a short bus distance, but you

should consider supplementing with a 10kohm resistor external to the U4x1 device.
The 10kohm resistor would be connected between the 1-wire data line and Vcc
(+5V).

VB Declaration
Public Declare Function USBm_Reset1Wire _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte)_
 As Integer

VB Example
Dim dataarray(8) as Byte
 dataarray(0) = 1
 USBm_Reset1Wire 3, dataarray(0)

This code fragment addresses U4x1 device #3, and issues a reset pulse on pin 1
(A.1).

C Prototype
int USBm_Reset1Wire(unsigned char device, unsigned char * data);

C Example
data = 1;
USBm_Reset1Wire(3, data);

This code fragment addresses U4x1 device #3, and issues a reset pulse on pin 1
(A.1).

RobotBASIC
usbm_Reset1Wire(ne_DeviceNumber,ne_Specs)

Returns the status of any devices on the 1wire line. Returns 0 if any device
reponded and 1 if none did. This function sets up the 1wire line to be used.

Raw Command Format:

Byte
Number

Description

0 1Dh: Reset1WireCmd

1 Pin - The bit that will be affected.

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is the port pin that is selected as a 1-wire
bus is configured with an internal pull-up resistor of approximately 14k ohm.
During idle bus times it is this resistor that pulls the line high. When the U4x1
transmits a low signal on the bus, it pulls the line low with an open collector device.

Bit/Line Selection

Byte
Value

Result Byte
Value

Result

00h Use A.0 as 1-wire bus 08h Use B.0 as 1-wire bus

01h Use A.1 as 1-wire bus 09h Use B.1 as 1-wire bus

02h Use A.2 as 1-wire bus 0Ah Use B.2 as 1-wire bus

03h Use A.3 as 1-wire bus 0Bh Use B.3 as 1-wire bus

04h Use A.4 as 1-wire bus 0Ch Use B.4 as 1-wire bus

05h Use A.5 as 1-wire bus 0Dh Use B.5 as 1-wire bus

06h Use A.6 as 1-wire bus 0Eh Use B.6 as 1-wire bus

07h Use A.7 as 1-wire bus 0Fh Use B.7 as 1-wire bus

Multiple 1-wire busses can exist simultaneously on the U4x1. It is the Reset1Wire
command that sets the port configuration for a specific line, plus sets the
subsequent read/write commands to use that line.

After the function is called, the returned byte contains a value that indicates if any
device returns a presence pulse. If a device was detected, the returned byte will be
00h. If no device was detected, the byte will be 01h.

The U4x1 devices support 1-wire communication with any 1-wire device. When you
select an I/O port line of the U4x1 to use as the connection to a 1-wire device, you
have changed that line from just being a digital I/O line to a 1-wire bus. The
Reset1Wire command configures the line with a 14kohm pull up resistor, and issues
a reset pulse on that line. The Reset1Wire command returns (via a pointer - see
the command description) an indication of the reception of the device presense
pulse.

If you select a particular line to use as the 1-wire bus, you do so with the
Reset1Wire command. A Read1Wire command or a Write1Wire command will
operate on the line that was last referenced by the Reset1Wire command.

What this means is that you can use all 16 lines on the U4x1 as 16 seperate 1-wire
busses. Issuing the Reset1Wire command is the way to get attention of the 1-wire
devices on that bus, prior to using the Read1Wire and Write1Wire commands to
communicate with the 1-wire device. You can use Reset1Wire to select and
communicate with one line of the U4x1, then use it again to communicate with a
different line on the U4x1.

You can use all 16 lines on the U4x1 to communicate with 16 1-wire devices, one
per line. But you can also have multiple 1-wire devices on each line, and address
them individually by using their ROM serial numbers. The 1-wire device
documentation contains the details that you need to communicate with 1-wire
devices.

The internal 14kohm pull up resistor will suffice for a short bus distance, but you
should consider supplementing with a 10kohm resistor external to the U4x1 device.
The 10kohm resistor would be connected between the 1-wire data line and Vcc
(+5V).

Raw Command Response Format:

Byte
Number

Description

0 1Dh: StepperCmd

1 Status

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command.

Byte 1 contains the connection status.

Byte 2 through byte 7 are unused.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Write1Wire

Online Development Notebook > Index > Programming Overview > Device Commands > Write1Wire

Write1Wire - Write a byte to a 1-wire
bus/device

VERSION 1.30+ of the firmware, VERSION 36+ of the DLL

Description:
This is a function to send a 1-wire (MicroLAN) byte write on the previously selected
port pin.

Command Syntax: (USBm.dll)
USBm_Write1Wire(device, data)

The USBm_Write1Wire function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data Byte to write to bus.

Remarks:
This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

VB Declaration
Public Declare Function USBm_Write1Wire _
 Lib "USBm.dll" _
 (ByVal device As Byte, _

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 ByVal data As Byte)_
 As Integer

VB Example
USBm_Write1Wire 3, 9

This code fragment addresses U4x1 device #3, and writes the value of 9 on the 1-
wire bus (line to use previously selected by the Reset1Wire command).

C Prototype
int USBm_Write1Wire (unsigned char device, unsigned char data);

C Example
USBm_Write1Wire (3, 9);

This code fragment addresses U4x1 device #3, and writes the value of 9 on the 1-
wire bus (line to use previously selected by the Reset1Wire command).

RobotBASIC
usbm_Write1Wire(ne_DeviceNumber,ne_Data)

Returns true if successfull, false otherwise. Writes a byte to the 1wire device.

Raw Command
See Write1WireBit

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Copyright © USBmicro, L.L.C., 2002-2010

Read1Wire

Online Development Notebook > Index > Programming Overview > Device Commands > Read1Wire

Read1Wire - Read a byte from a 1-wire
bus/device

VERSION 1.30+ of the firmware, VERSION 36+ of the DLL

Description:
This is a function to send a 1-wire (MicroLAN) byte read on the previously selected
port pin.

Command Syntax: (USBm.dll)
USBm_Reset1Wire(device, dataarray)

The USBm_Reset1Wire function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray
The function causes this variable to be changed to the value read from
the bus. Minimum array size of 8.

Remarks:
This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

VB Declaration
Public Declare Function USBm_Read1Wire _
 Lib "USBm.dll" _

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 (ByVal device As Byte, _
 ByRef dataarray As Byte)_
 As Integer

VB Example
Dim dataarray(8) As Byte
 USBm_Read1Wire 3, dataarray(0)

This code fragment addresses U4x1 device #3, and reads a byte from the 1-wire
device. The read value is in "dataarray(0)".

C Prototype
int USBm_Read1Wire (unsigned char device, unsigned char * data);

C Example
USBm_Read1Wire (3, dataarray);

This code fragment addresses U4x1 device #3, and reads a byte from the 1-wire
device. The read value is in "data".

RobotBASIC
usbm_Read1Wire(ne_DeviceNumber)

Returns a byte value that is read from the 1wire device.

Raw Command
See Read1WireBit

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

Write1WireBit

Online Development Notebook > Index > Programming Overview > Device Commands >
Write1WireBit

Write1WireBit - Write a bit to a 1-wire
bus/device

VERSION 1.46+ of the firmware, VERSION 58+ of the DLL

Description:
This is a function to send a 1-wire (MicroLAN) bit write on the previously selected
port pin.

Command Syntax: (USBm.dll)
USBm_Write1WireBit(device, data)

The USBm_Write1WireBit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

data Bit to write to bus (00h or 01h).

Remarks:
This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

VB Declaration
Public Declare Function USBm_Write1WireBit _
 Lib "USBm.dll" _

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

 (ByVal device As Byte, _
 ByVal data As Byte)_
 As Integer

VB Example
USBm_Write1WireBit 3, 1

This code fragment addresses U4x1 device #3, and writes the bit value of 1 on the
1-wire bus (line to use previously selected by the Reset1Wire command).

C Prototype
int USBm_Write1WireBit (unsigned char device, unsigned char data);

C Example
USBm_Write1WireBit (3, 1);

This code fragment addresses U4x1 device #3, and writes the bit value of 1 on the
1-wire bus (line to use previously selected by the Reset1Wire command).

RobotBASIC
usbm_Write1WireBit(ne_DeviceNumber,ne_BitValue)

Returns true if successful, false otherwise. Writes a 0 or 1 to the 1wire device.

Raw Command Format:

Byte
Number

Description

0 1Eh: Write1WireCmd

1 Data - Byte/bit to write.

2 Byte/bit - 0 = write byte, 1 = write bit. Bit feature for VERSION 1.30+
of the firmware

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 contains the data to write to the previously
selected port line. the data is either a byte or a bit, depending on byte 2.

Byte 2 selects writing either a byte or a bit.

This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

Raw Command Response Format:

Byte
Number

Description

0 1Eh: Write1WireCmd

1 <not used>

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 through byte 7 are unused.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Read1WireBit

Online Development Notebook > Index > Programming Overview > Device Commands >
Read1WireBit

Read1WireBit - Read a bit from a 1-wire
bus/device

VERSION 1.46+ of the firmware, VERSION 58+ of the DLL

Description:
This is a function to send a 1-wire (MicroLAN) bit read on the previously selected
port pin.

Command Syntax: (USBm.dll)
USBm_Reset1WireBit(device, dataarray)

The USBm_Reset1WireBit function syntax has these parts:

Part Description

device A zero-based index to address the appropriate USB device.

dataarray
The function causes this variable to be changed to the value read from
the bus (00h for a bit value of 0, and a value that is not 00h for a bit
value of 1). Minimum array size of 8 bytes.

Remarks:
This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

VB Declaration

guidnode://8C5C31D8A0BBBFD10D7E5CB953B2E3B7B2DF51EC
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
http://www.usbmicro.com/index.html

Public Declare Function USBm_Read1WireBit _
 Lib "USBm.dll" _
 (ByVal device As Byte, _
 ByRef dataarray As Byte)_
 As Integer

VB Example
Dim dataarray(8) As Byte
 USBm_Read1WireBit 3, dataarray(0)

This code fragment addresses U4x1 device #3, and reads a bit from the 1-wire
device. The read value is in "dataarray(0)". 00h for a bit value of 0, and a value
that is not 00h for a bit value of 1

C Prototype
int USBm_Read1WireBit (unsigned char device, unsigned char * data);

C Example
USBm_Read1WireBit (3, dataarray);

This code fragment addresses U4x1 device #3, and reads a bit from the 1-wire
device. The read value is in "dataarray[0]". 00h for a bit value of 0, and a value
that is not 00h for a bit value of 1

RobotBASIC
usbm_Read1WireBit(ne_DeviceNumber)

Returns a bit value that is read from the 1wire device.

Raw Command Format:

Byte
Number

Description

0 1Fh: Read1WireCmd

1 <not used>

2 Byte/bit - 0 = write byte, 1 = write bit. Bit feature for VERSION 1.30+

of the firmware

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Format Details:
Byte 0 contains the command. Byte 1 is not used.

Byte 2 selects reading either a byte or a bit.

This command does not set the port direction pins or select the pin to use as the 1-
wire bus - it is the Reset1Wire command that does this.

Raw Command Response Format:

Byte
Number

Description

0 1Fh: Read1WireCmd

1 Data - Byte/bit read.

2 <not used>

3 <not used>

4 <not used>

5 <not used>

6 <not used>

7 <not used>

Raw Command Response Format Details:
Byte 0 contains the command. Byte 1 is the byte/bit data that was read. Byte 2
through byte 7 are unused.

If a 0 bit is read, data = 0. If a 1 bit is read, data is not 0.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Download Files

Online Development Notebook > Index > Download Files

Download Files

The files available for download are located here. The files are presented as-is.
Please see the application section for information about these files.There is a link to
the files appropriate for the application in the application section, but all of the
downloadable example and library files for the U4x1 devices are also collected here.

The USBmicro DLL is included with the application samples. The USBm.dll Dynamic
Link Library can be used by any owner of a U401/U421/U451 without a license
charge.

All application files: (all application files)

All misc application files: (all misc application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/miscapp.zip
http://www.usbmicro.com/apps/appfiles.zip
http://www.usbmicro.com/index.html

U4x1 Application Notes

Online Development Notebook > Index > U4x1 Application Notes

Application Notes - Putting the U401,
U421, and U451 to work

The U401/U421/U451 can be used for a wide range of applications, tying devices to
the PC via USB. It is very simple to interface to the U401 using it as a large SIP-
type of device in your custom application. Using the U401 to interface with
SimmSticks couldn't be easier. Like the U401, the U421 can also be used with
solderless experimenter boards. The app notes located here in this section cover
some of these potential applications.

All application files: (all application files)

LXXVI. Digital output: Driving relays

Relays can be driven by the U401/U421 by setting the appropriate I/O lines to
output and using appropriate relay driver circuitry. The Dontronics relay board
DT205 is a simple way to accomplish this. The U451 has two on-board relays, and
6 open collector outputs that can be used to drive more relays.

LXXVII. Digital input: reading switches

Simple buttons, switches, and other CMOS-level inputs can be read by the
U401/U421/U451. A Dontronics board, the DT203, can be used for input testing.

LXXVIII. Writing to an LCD display

Many character LCD modules (HD44780 devices) are compatible with the LCD

http://www.dontronics.com/dt203.html
http://www.dontronics.com/dt205.html
http://www.usbmicro.com/apps/appfiles.zip
http://www.usbmicro.com/index.html

commands of the U401/U421/U451. These modules range from one row of eight
characters to four rows of forty characters.

LXXIX. Expanding output by using SPI

A serial shift device, such as the 74HC595, allows for the expansion of output lines
via the SPI port.

LXXX. Expanding input by using SPI

A parallel to serial device, such as the 74HC165, will increase the number of input
lines by shifting eight inputs in to the U401/U421/U451 via the SPI subsystem.

LXXXI. Using the U401/U421/U451 as a power source

The U401/U421/U451 can be attached to a PC as a USB device and allow a circuit
to use the 5V power from the USB port. There are examples of this in consumer
devices, such as a notebook PC light.

LXXXII. Serial A/D via SPI

A/D converters that interface via a SPI bus can be used to read analog values into
the PC via the SPI subsystem of the U401/U421/U451.

LXXXIII. Parallel A/D via strobed byte read/write

Various microcontroller interface chips, such as some A/D converters, use a strobed
read command to read eight bits of data. The strobe function of the
U401/U421/U451 can interface to these chips.

LXXXIV. SPI EEPROM programming

SPI EEPROMS can be interfaced to the PC via the SPI subsytem of the
U401/U421/U451. The EEPROM can be read and written using U401/U421/U451
commands.

LXXXV. Atmel AVR (ATtiny) programming

The Atmel ATtiny series of microcontrollers can be programmed via the SPI
subsystem of the U401/U421/U451.

LXXXVI. Serial potentiometer control

SPI potentiometers can be interfaced to and controlled by the U401/U421/U451.

LXXXVII. Home automation sensing and control

Door/window contacts can be monitored as inputs to the U401/U421/U451, and
relays driven by outputs. Your home can be controlled by a PC interfaced to the
U401/U421/U451. The U4x1 supports 1-wire/MicroLAN, often used in Home
Automation for temperature sensing and remote I/O. The U451 with relays is
especially suited to Home Automation.

LXXXVIII. Model tethered robot or railroad control

Tethered robot experiments can be done with all of the features of the
U401/U421/U451.

For more application information on interfacing components to I/O ports, check out

books such as Jan Axelson's Parallel Port Complete and The Microcontroller Idea
Book. The interfacing ideas in these books can be extended to the
U401/U421/U451.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App0: Cmd Test

Online Development Notebook > Index > U4x1 Application Notes > App0: Cmd Test

App0: Command Test Application

Purpose
Provide a program that tests the communication of command messages to the
U401/U421/U451. This application will transfer the "raw" command to/from the
U4x1. The raw commands are typically used for OS support other than Windows.
This Windows application shows how a raw command is used, similar things can be
done for other operating systems. The raw commands are used for this type of
programming, or for alternate OS programming. Since the USBm.dll encapsulates
these commands and gives commands that are easier to read/understand, it is
better to use the commands in USBm.dll.

Description
This is a debug application that will send a command to the U401/U421/U451 and
display the response. The command is entered in the eight data boxes. When the
"command" button is clicked, the message is sent to the U401/U421/U451, and
displayed in the status box along with the response from the U401/U421/U451.
App0 can also be used to display the U4x1 serial number and other device
information.

Screen Shot
Below is a screen shot of this application after sending the command to initialize
ports. The line with the ">" is the raw command sent to the U4x1, below that, the
reply. The first byte, the command byte, is set to all 00h. The remaining bytes for
this command are not used by the U4x1 and reflect the values in the entry boxes.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Below two additional raw commands have been sent to the U4x1. The "09"
command sets the lines of port A to all outputs. The "01" command sends a byte
value (55h) to port A.

Hardware
This application can send messages to an attached U4x1 for testing. No additional
hardware is necessary for Application 0. Specific hardware for testing different
commands depend on that command.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

App0: VB USBm.dll

Online Development Notebook > Index > U4x1 Application Notes > App0: Cmd Test > App0: VB
Implementation with USBm.dll

App0: VB Implementation with USBm.dll

VB Project
The VB project includes the file USBmAPI.bas. This file acts as the interface
between the VB project code and the USBm.dll. Each function in the DLL has a
corresponding declaration in this basic file, so that the VB compiler can correctly
match the called parameters. This application uses the USBm.dll interface, but uses
the DLL commands USBm_ReadDevice and USBm_WriteDevice to send the raw
commands.

Discover Devices
 ' Discover device(s)
 USBm_FindDevices

 ' First U4xx device
 If USBm_DeviceValid(0) Then

 DeviceStatus.Caption = "USB Device Found"
 DeviceStatus.BackColor = &H1FF00

 result = USBm_DeviceMfr(0, workstr)
 Manufact.Caption = "Made by: " & Hex$(USBm_DeviceVID(0)) & ":
" & workstr

 result = USBm_DeviceProd(0, workstr)
 Device.Caption = Hex$(USBm_DevicePID(0)) + ": " + workstr

 DevVersion.Caption = Hex$(USBm_DeviceDID(0))

 result = USBm_DeviceSer(0, workstr)
 Serial.Caption = workstr

guidnode://9747B98348ACA969241FE5E4E3B5B3C836174A2A
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

 Else

 DeviceStatus.Caption = "USB Device Not Found"
 DeviceStatus.BackColor = &H1FF

 End If

USBm_FindDevices is called to have the DLL find the U4x1 devices attached to all
USB buses. The devices are found and assigned to an internal table. The device
table starts at 0, so the first U4x1 device found would be device 0. The second USB
device would be device 1, and so on.

The sample application addresses a single U4x1 device, the first (0) device. If a
valid device 0 is found, then get some general information from e device, such as
the serial number.

Send a command to the U4x1
 ' Send a command to the device
 Private Sub Cmd_Click()

 ' Get bytes from input boxes
 OutBuffer(0) = ReturnHexByte(Byte0.Text)
 OutBuffer(1) = ReturnHexByte(Byte1.Text)
 OutBuffer(2) = ReturnHexByte(Byte2.Text)
 OutBuffer(3) = ReturnHexByte(Byte3.Text)
 OutBuffer(4) = ReturnHexByte(Byte4.Text)
 OutBuffer(5) = ReturnHexByte(Byte5.Text)
 OutBuffer(6) = ReturnHexByte(Byte6.Text)
 OutBuffer(7) = ReturnHexByte(Byte7.Text)

 ' Copy data to display box
 StatusBox.AddItem "> " + _
 TwoHexCharacters$(OutBuffer(0)) + " " + _
 TwoHexCharacters$(OutBuffer(1)) + " " + _
 TwoHexCharacters$(OutBuffer(2)) + " " + _
 TwoHexCharacters$(OutBuffer(3)) + " " + _
 TwoHexCharacters$(OutBuffer(4)) + " " + _
 TwoHexCharacters$(OutBuffer(5)) + " " + _
 TwoHexCharacters$(OutBuffer(6)) + " " + _
 TwoHexCharacters$(OutBuffer(7))

 ' Write command to device, and get reply
 Call WriteReadUSB

 ' Copy data to display box
 StatusBox.AddItem " " + _
 TwoHexCharacters$(InBuffer(0)) + " " + _
 TwoHexCharacters$(InBuffer(1)) + " " + _
 TwoHexCharacters$(InBuffer(2)) + " " + _
 TwoHexCharacters$(InBuffer(3)) + " " + _
 TwoHexCharacters$(InBuffer(4)) + " " + _
 TwoHexCharacters$(InBuffer(5)) + " " + _

 TwoHexCharacters$(InBuffer(6)) + " " + _
 TwoHexCharacters$(InBuffer(7))

 StatusBox.AddItem " "

End Sub

' USB Transfer
Public Sub WriteReadUSB()

 USBm_WriteDevice 0, OutBuffer(0)
 USBm_ReadDevice 0, InBuffer(0)

End Sub

This code shows what is done when the command button is pressed.
First, the bytes that are in the input boxes (take a look at the form)
are copied to an array. Those command bytes are then copied to the
display.

The call to WriteReadUSB is the communication with the U4x1 device.
WriteReadUSB transfers the command to the USB device, and gets the
reply from the device. The device reply is then copied to the display.

Download Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

App1: Output

Online Development Notebook > Index > U4x1 Application Notes > App1: Output

App1: Output Application

Purpose
Provide a program that tests the control of external devices through the output
commands of the U401/U421/U451.

Description
This program initializes all of the sixteen i/o lines of the U4x1 to be outputs and
allow control of each line.

There are two ways to change the state of the output lines. The output lines can be
written to as an 8-bit wide byte, and as individual bits.

The buttons labeled "Write Output" will write the byte-wide value entered in the
adjacent box to the port. The left button writes to port A and the right button
writes to port B.

Individual lines can be controlled by toggling the buttons located below the line
number at the bottom of the application window. A bright red color indicates that
the line is set high, while a dark red color shows that the line is set low.

Screen Shot
Below is the application screen as it looks when the program is first initialized. Both
ports (all of the lines) have been set to be outputs and have been set to all zeros.
When new values are written to the ports, the individual boxes (for each line) will
change from gray to either bright or dark red.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Here the application screen shows values written to the ports.

Hardware
No hardware is necessary to run this application. A volt-reading meter, such as a
DVM can be used to read the status of any one of the 16 outputs. The meter
ground (black) lead should be connected to the U4x1 ground connection as a
reference.

A relay board such as the DT205 SimmStick can be attached to the U4x1 and
controlled by this application.

Example output circuit for driving an LED:

Example output circuit for driving a relay to control higher power circuits:

Example of an opto-isolated interface:

Also see the Relay Tutorial:Amp It Up!

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://82DC3CF22AC515D2B6FB34CCEC885E0C64426E8F

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

App2: Input

Online Development Notebook > Index > U4x1 Application Notes > App2: Input

App2: Input Application

Purpose
Provide a program that reads the state of digital lines connected to the
U401/U421/U451.

Description
This program initializes all of the sixteen i/o lines of the U4x1 to be inputs that can
then be read by the PC.

The state of individual lines are displayed on the bottom of the application window.
A bright red color indicates that the line is set high, while a dark red color shows
that the line is set low.

Screen Shot
Below is the application screen as it looks when the program is first initialized. Both
ports (all of the lines) have been set to be inputs. When new values are read from
the ports, the individual boxes (for each line) will change from gray to either bright
or dark red.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Hardware
No specific hardware is necessary to run this application. The individual input lines
can be connected to either high (+5V) or low (ground).

An interface board such as the DT203 SimmStick can be attached to the U4x1 and
read by this application.

Example of a single switch input to the U4x1 (10k ohm resistor would work fine):

Example of an opto-isolated input:

Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

App3: LCD

Online Development Notebook > Index > U4x1 Application Notes > App3: LCD

App3: LCD Application

Purpose
Provide a program that initializes and writes information to an LCD.

Description
This program initializes all of the I/O lines of the U4x1 that are used with the LCD.

Screen Shot
The application will initialize the LCD display with a series of commands when the
Init LCD button is pressed. The application can write individual LCD commands and
single bytes of display data.

If text is entered into the text box, the application will copy that text to the LCD.

Hardware
The U4x1 has been interfaced to 1X16, 2X16, 2X40 (and etc.) displays. The
flexibility of the commands for using any port for data and any pins for the "E",
"R/W", and "RS" lines help to interface to any HD44780 device.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Example LCD connection to U4x1:

For the schematic above, use command #10 (InitLCD) to select the right port and
pins. The raw command 10-10-12-00-00-00-00-00 will select port B for the data
lines to the LCD, D1 for the RW line, D0 for the RS line, and D2 for the E line.

Code
Download all application files: (all application files)

Using the DLL for communication, rather than the raw commands, would employ
calls to USBm_InitLCD, USBm_LCDCmd and USBm_LCDData (as well as port
direction commands).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

HD-44780 LCD Info

Online Development Notebook > Index > U4x1 Application Notes > App3: LCD > HD-44780 LCD
Information

HD-44780 LCD Information

This app note describes the commands that control an HD-44780-based LCD
display.

LCD Commands

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

 Description

0 0 0 0 0 0 0 1 Clear the display. Set address to 0.

0 0 0 0 0 0 1 - Return to home position.

0 0 0 0 0 1 d s Entry mode.
 d = 0 (positive direction), 1 (negative direction)
 s = 0 (no shift), 1 (shift)

0 0 0 0 1 d b c Display/cursor enable
 d = 0 (display off), 1 (display on)
 b = 0 (blink off), 1 (blink on)
 c = 0 (cursor off), 1 (cursor on)

0 0 0 1 s r - - Display/ cursor shift
 s = 0 (cursor shift only), 1 (display and cursor shift)
 r = 0 (right), 1 (left)

0 0 1 d n f - - Data interface
 d = 0 (8 bit), 1 (4 bit)
 n = 1 (2 lines), 0 (1 line)
 f = 1 (5*10 dots), 0 (5*8 dots)

1 a a a a a a Set CG RAM address

guidnode://914C4C0E5F55447715C3A966C6E670F2416033A7
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

1 a a a a a a a Set DD RAM address

Instruction Description (From Hitachi)
Clear Display

Clear display writes space code 20H (character pattern for character code 20H must
be a blank pattern) into all DDRAM addresses. It then sets DDRAM address 0 into
the address counter, and returns the display to its original status if it was shifted.
In other words, the display disappears and the cursor or blinking goes to the left
edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1
(increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DDRAM address 0 into the address counter, and returns the
display to its original status if it was shifted. The DDRAM contents do not change.
The cursor or blinking go to the left edge of the display (in the first line if 2 lines
are displayed).

Entry Mode Set

I/D: Increments (I/D = 1) or decrements (I/D = 0) the DDRAM address by 1 when
a character code is written into or read from DDRAM. The cursor or blinking moves
to the right when incremented by 1 and to the left when decremented by 1. The
same applies to writing and reading of CGRAM.

S: Shifts the entire display either to the right (I/D = 0) or to the left (I/D = 1)
when S is 1. The display does not shift if S is 0. If S is 1, it will seem as if the
cursor does not move but the display does. The display does not shift when reading
from DDRAM. Also, writing into or reading out from CGRAM does not shift the
display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0. When off, the display data
remains in DDRAM, but can be displayed instantly by setting D to 1.

C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if the
cursor disappears, the function of I/D or other specifications will not change during
display data write. The cursor is displayed using 5 dots in the 8th line for 5 ´ 8 dot
character font selection and in the 11th line for the 5 ´ 10 dot character font
selection (Figure 13).

B: The character indicated by the cursor blinks when B is 1 (Figure 13). The
blinking is displayed as switching between all blank dots and displayed characters
at a speed of 409.6-ms intervals when fcp or fOSC is 250 kHz. The cursor and blinking
can be set to display simultaneously. (The blinking frequency changes according to
fOSC or the reciprocal of fcp. For example, when fcp is 270 kHz, 409.6 ´ 250/270 =
379.2 ms.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left

without writing or reading display data (Table 7). This function is used to correct or
search the display. In a 2-line display, the cursor moves to the second line when it
passes the 40th digit of the first line. Note that the first and second line displays
will shift at the same time. When the displayed data is shifted repeatedly each line
moves only horizontally. The second line display does not shift into the first line
position. The address counter (AC) contents will not change if the only action
performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB7 to
DB0) when DL is 1, and in 4-bit lengths (DB7 to DB4) when DL is 0.When 4-bit
length is selected, data must be sent or received twice.

N: Sets the number of display lines.

F: Sets the character font.

Note: Perform the function at the head of the program before executing any
instructions (except for the read busy flag and address instruction). From this
point, the function set instruction cannot be executed unless the interface data
length is changed.

Set CGRAM Address

Set CGRAM address sets the CGRAM address binary AAAAAA into the address
counter. Data is then written to or read from the MPU for CGRAM.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App4: SPI Output

Online Development Notebook > Index > U4x1 Application Notes > App4: SPI Output

App4: SPI Output Application

Purpose
Provide a program that tests the SPI communication of the U401/U421/U451.

Description
The U4x1 has the ability to interface with SPI devices. Output expansion using a
serial shift SPI device, the 74CH595, will give the U4x1 eight more output lines.

Screen Shot
This application is used for experimenting with output SPI devices, such as the
74HC595. The application can control the state of 13 output lines that can be used
to select the SPI device.

A "Write SPI" button will write the data entered in the data box to the SPI device.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Hardware
Experimentation with SPI devices can be done with the 74HC595, a serial to
parallel shift register.

Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

App5: SimmSticks

Online Development Notebook > Index > U4x1 Application Notes > App5: SimmSticks

App5: SimmSticks Application

Purpose
Provide information about using the U401 with the many available SimmSticks. For
more information on SimmSticks, see SimmSticks.

Description
The U401 is compatible with much of the form of the SimmSticks. It is true that the
PCB is not thin and notched to fit in a SIMM socket, but the intent if the design is to
still remain usable with SimmSticks. The U401 is electrically compatible with the
SimBus standard.

The U401 SimBus edge can be populated with a SIP-style connector, either right-
angle or straight. When built in this way, the U401 can be used in SimmStick host
boards that use the pin-type of sockets.

Using pin connections in the U401 also allows the device to be used in "white
experimenter boards" or "solderless breadboards".

A single SIMM socket can be attached to the U401 turning the U401 into a host
board for a SIMM SimmStick.

A DT208 SimmStick Adaptor Board can be used if it is necessary to use the U401
with SIMM sockets.

Screen Shot
For an example, the U401 was attached to a DT203 with populated LEDs. The
sample program marched an illuminated LED through all 16 positions.

guidnode://1B087C05E9DA90ADD4408B1F72355835C7F938EA
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Hardware
A U401 used in a solderless breadboard:

A U401 attached to the rear of a DT003 main board:

A U401 in the SIMM socket of a DT003 using pins and a DT208 with a
socket strip:

A U401 with right-angle pins attached to a DT203:

A U401 attached to a DT204 board:

A U401 attached to the top of a DT205 relay board:

A U401 using the DT208 "skinny" board converter:

Code
Download all application files: (all application files)

http://www.usbmicro.com/apps/appfiles.zip

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App6: Digio

Online Development Notebook > Index > U4x1 Application Notes > App6: Digio

App6: USB Digital I/O Commander
(Digio)

Purpose
Demonstrate advanced control and automation using a commercial control
program.

Description

The USB Digital I/O Commander gives you full control of digital I/O for any
application including robotics, industrial control, or hobby I/O. The heart of the
product is the U4x1 USB interface. This module provides the interface between
your I/O and the PC computer. Taking advantage of USB technology, the system is
easily expanded to suit your needs. A single USB module provides 16 I/O signals,
configurable in any combination of inputs and outputs. If you need more signals,
simply add additional modules.

To purchase this combo package visit the USB Digital I/O Commander page.

Digio Screen Image

http://www.kadtronix.com/digio.htm
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Details
Would you like to use your PC in a data acquisition or control application? The USB
Digital I/O Commander allows you to set digital outputs and read digital inputs. In
addition, it allows you to specify an event to occur when a specific input or set of
inputs changes state. For instance, you can configure the software to send a pre-
determined e-mail message to a recipient when input bits 0 to 3 equal the value
"14". Or, configure to play a wav sound when bit 5 is "high". You can do this and
much more. With 5 different notification types, the possibilities are limit-less.

Features:

LXXXIX. Configure input(s) as single-bit or multiple-bit event triggers

XC. Use time-triggers to generate notification(s) at specific time(s) of the day
or week

XCI. Use signal-triggers to generate notification(s) when an input or set of
inputs change state

XCII. 5 different notifications including email, sound, pop-up message, set
output, and execute application

XCIII. Attach events and perform test preview

XCIV. U4x1 USB interface module included, providing 16 I/O signals

XCV. I/O signals configurable in any combination of inputs and outputs

XCVI. Expandable up to 160 I/O signals by adding more modules

XCVII. Configure notification delays to limit the number of notifications over a
period of time

XCVIII. Compatible with multiple email client programs including Outlook, Eudora,
& Netscape

XCIX. Configurable device polling rate

The USB Digital I/O Commander manual can be consulted for further details. For
further questions contact Kadtronix.

Hardware
The USB Digital I/O Commander uses one or more U4x1 USB interfaces. The
devices that the U4x1 then interfaces to must operate on CMOS outputs (for device
control) or provide CMOS levels to the U4x1 for monitoring.

Code
There is a 30-day trial version now available from Kadtronix. This fully functional
version has all the features of the purchase version and is fully compatible with the
U4x1 USB interface module. After loading the zip file, uncompress using WinZip or
other utility program. Then run the setup file and follow the instructions. (U4x1
required for interfacing to your I/O.) Downlod this file for the trial application.

Obtaining the Combo Package

The USB Digital I/O Commander application and a U4x1 USB interface is available
as a package from Kadtronix.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.kadtronix.com/
http://www.kadtronix.com/downloads/digio30share.zip
http://www.kadtronix.com/
mailto:info@kadtronix.com
http://www.kadtronix.com/digio/digio_usr.htm

Digio Tutorial

Online Development Notebook > Index > U4x1 Application Notes > App6: Digio> Digio Tutorial

Digio Tutorial

This app note created by Kadtronix and used with permission.

Version 1.10
10/10/05

Copyright (C) 2005
All rights reserved

Kadtronix / Delahoussaye Consulting
web: www.kadtronix.com
email: info@kadtronix.com

Introduction
The purpose of this tutorial is to provide hands-on instruction for using the USB
Digital I/O Commander software. This powerful tool can be configured for any
number of applications including process control, robotics, automation, etc. The
intent of this tutorial is to provide instruction on how to configure the software and
tailor it to suit your specific application. It describes a real-world example, namely,
a USB security system, featuring PIR motion sensor and USBmicro U401 interface.

http://www.kadtronix.com/
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

BV300 motion detector and USB interface board

The USB Digital I/O Commander, herein referred to as simply "Digio", provides a
powerful means of interfacing your computer to external devices via digital I/O
signals. Compatible with desktop and laptop systems, Digio allows a Windows PC
to set digital outputs and/or read digital inputs. You can use Digio as a means of
controlling external devices.

While Digio can perform simple "set" and "get" operations, its real strength lies is
its ability to define notification action(s) when input signals, also referred to as
"trigger signals", change state. You'll find Digio an important tool for use in a
variety of applications including industrial control, hardware design, and
prototyping.

Digio uses a USB I/O interface module that connects to an available USB port on
your computer. The module provides 16 I/O signals configurable in any
combination of inputs and outputs. The system is easily expanded by simply
adding more USB modules.

Becoming familiar with a new tool can sometimes be a daunting task. Many times
a real-world example provides the insight needed to gain confidence and
understanding. This tutorial describes how to use Digio to configure a real-world
USB security system consisting of PIR motion sensor, 10 door/window sensors,
horn/siren relay, and USB interface (U4x1). (For details on purchasing a USB
security system plus Digio software, refer to the USB Motion Detector at the
Kadtronix website.) For details on Digio software including system requirements,
installation, and descriptions, you can view the Digio User Manual online.

Wiring and Hookup
The following diagram shows the USB security schematic including motion detector,
door/window sensors, and U4x1 interface. Also included is a reed relay for
horn/siren activation.

http://www.kadtronix.com/digio/lan/digio_usr.htm
http://www.kadtronix.com/
http://www.kadtronix.com/digio/motion/usb_motion.htm

The following image shows how to wire a standard PIR motion detector. An
external source is required for powering the detector.

Start Digio Software
Before beginning, you should plug your U4x1 device into an available USB port on
your computer. If all ports are occupied, you should obtain a USB hub which will
expand the number of available ports. Now, activate the Digio program by
selecting:

Start Menu -> Programs -> USB Digital I/O Commander for LAN

When the program begins, the main display dialog appears as shown below:

On first-time start-up, you will be asked to register your software. Fill in the
requested fields and click "Send" to submit your registration data.

Your software may require a license key for activation. If so, a key will be provided
to you via e-mail after purchase. The license key is an encoded string consisting of
a series of alpha-numeric characters. When you receive the license key, select the
following main menu item:

Tools -> Enter License Key...

Enter the encoded key string in the "Enter key:" field as shown in the example
below. Then, click "OK" to accept the new key and enable the application.

Adjust System Properties
For proper operation of the security system application, you will need to make
some settings adjustments within the properties page. To open the properties
page, make the following menu selection:

Tools -> Properties

Make the settings adjustments as shown below:

Of particular importance are the notification delay settings shown below. Be sure
to activate the "No Re-Trigger" check-box. This will ensure that alarms do not re-
trigger falsely.

If you plan to use the automatic e-mail feature, you must configure e-mail
properties. Click the E-mail "Properties" button located at the bottom left section
of the page. The following dialog image will be shown:

The following parameters are required for email notifications:

1. Your email address (e.g., jimmy@att.net)

2. Outgoing (SMTP) mail server (e.g., mailhost.worldnet.att.net)

The program is compatible with systems where e-mail is implemented on
networked servers. In this instance, simply enter the server name in the "Outgoing
Mail Server" field.

Specify the following parameters only if SMTP authentication is required:

1. SMTP user name

2. SMTP password

Click the "OK" button to save your e-mail settings and return to the global
properties page. The bottom ritght section of the page provides a field for
supplying a network port number. This value is needed to allow remote machines

to connect to your computer for monitoring purposes. (This field is required only if
you have purchased the multi-user LAN product.)

Now that you have completed the properties settings, close the dialog by clicking
"OK".

Configure I/O Signals
It's time to configure your I/O signals. This step is required for defining which of
the U4x1 signals are inputs and which are outputs. There are 16 total signals
provided by the U4x1, each individually configurable. Your USB security system will
use 12 signals in all: 1 output plus 11 inputs. To configure the device, make the
following menu selection:

Tools -> I/O Control...

Use the "Device" combo-box to select the device as shown. Digio can
accommodate multiple U4x1 devices, but our security system application uses only
1 device and it will be designated DEV_00. Additional USB devices would be
designated DEV_01, DEV_02, etc. You should establish directions (input/output),
states (high/low), and label descriptions as shown. (Note: It is not necessary to
set the high/low state on inputs since they will be determined by the software
automatically.)

Also enter default notification delay values as shown. Notification delays are used
to prevent an overload of notifications on very active inputs. The "Default" column
defines the beginning countdown value when a trigger event occurs. For instance,
a value of 30 indicates that a minimum delay of 30 seconds is required between
successive alarm trigger notifications.

After completing the fields, click "OK" to save your selections, exit the dialog, and
return to the main display. It should now contain a summary of your recent
settings changes as shown below:

Define Events
Now that you have configured the inputs and outputs, you can create events and
attach them to your signals. These event associations define alarm ("trigger")
conditions and the action(s) to perform. You can also think of these actions as
notifications. To define notifications, select the following menu item:

Tools -> Attach Events...

You will notice that most of the fields have been grayed (disabled). This is because
the selected signal ("00") is configured as an output for horn/siren activation.
Since events are defined for inputs only, you will bypass this signal and go to signal
"01" instead. To do this, left-click the mouse on the "Signal" combo-box and select
"01" as shown below:

The following display will be shown whose contents represent the PIR motion
detector:

First, ensure that the defined bit length is "1" as shown in the image below:

Next, locate the region titled "Single-Bit Trigger" and select "HIGH" as shown
below. This assumes the normal pre-trigger state is LOW and that detected motion
will cause the signal to become HIGH.

Since you will not be using SPI triggers or Time/Day triggers, you should keep
them disabled. It's now time to define some notifications. Remember that these
are the actions to take when the PIR motion detector "triggers", i.e., detects
movement. There are 8 possible notification types. You will define four actions to
perform: display a message on the monitor, send an e-mail message, set a signal
output, and play a sound file. Left-click each check-box to enable the four events
as shown below:

You will notice two rows of buttons to the right labeled "Select..." and "Preview".
Use the select buttons to define events and the preview buttons to test them.

Now, left-click the first (upper) "Select..." button associated with the "Display Msg"
selection. Enter the message text, "Motion detected in front lobby" as shown.
This text message will be displayed on your computer's monitor when the event
occurs. Use "Auto" to automatically extinguish the message after the specified
number of seconds. Click "OK" to save the selections, close the dialog, and return
to the previous page.

Left-click the "Select..." button associated with the "Send E-mail" selection. This
allows you to designate an e-mail message to occur in response to an event.
Choose the desired e-mail recipient(s), message subject, and body. If you have
not already done so, be sure to specify e-mail properties using the "Properties..."
button. Click "Send" to send a test e-mail message. Click "Close..." to save the
selections, close the dialog, and return to the previous page.

Next, left-click the"Select..." button associated with the "Set Output" selection.
This will allow you to activate the horn/siren relay in response to detected motion.
Make the selections as shown, being sure to choose output signal "00". Also check
the "Enable Toggle" box and specify a time delay. This will cause the siren to
automatically deactivate after the defined time period. Click "OK." to save the
selections, close the dialog, and return to the previous page.

Now, left-click the "Select..." button associated with the "Play Wav" selection. A
file browser dialog will appear, allowing you to choose the desired sound file. This
file will be played when the alarm event occurs. Click "Open" to save the selection,
close the dialog, and return to the previous page. Use the "Preview" button to play
the selected sound file.

Now that you have defined the four alarm notifications for signal "01", your events
page should resemble the following:

Next, define event associations for the remaining inputs: 02 through 11. Follow
the same procedures as described above, beginning with input signal selection as
shown below:

Since signal 02 corresponds to the "Front Entrance", you should define messages
that appropriately describe this input. You have the flexibility to define any subset
of the 8 available notification types. If you choose to remove or disable a
notification, simply left-click the box to remove its check-mark.

Test
You're now ready to perform a test. Before starting, close the Digio application,
being careful to save your program settings. Next, plug the U4x1 device into an
available USB port on your computer. Apply power to the motion detector and then
start the Digio software once again. You should see a status message near the
bottom left segment of the Digio display that reads, "1 U4x1 device(s)!", indicating
the U401 was found.

There is a small red indicator light on the front of the detector unit that illuminates
when movement is detected. While viewing your computer's monitor, walk in front
of the detector or have an assistant do so. You should notice a pop-up message on
your monitor as shown below:

If you configured this message as suggested earlier in the tutorial, it will be shown
for several seconds and then automatically extinguish. If you have designated
audio (.wav sound) and/or e-mail notifications, make sure they also trigger. If they
do not, check the Digio configuration to determine if they are properly defined and
enabled. Test the horn/siren relay with a multi-meter. Attach leads to the
unsoldered contact connections and check for continuity. The relay will be
activated for 20 seconds before deactivating automatically.

Appendix I: USB I/O Module
The USB I/O Module provides the interface between your external hardware and
the PC. Made by USBmicro, this module provides 16 signal lines, configurable in
any combination of inputs and outputs.

Appendix II: Virtual LED Panels
Virtual LED panels provide easy viewing of digital input and output signal states in
a color-coded display. A single panel of 16 LEDs exists for each active device. To
view the panel(s), click the LED check-box in the upper right section of the main
display: To extinguish the panels, click again to clear the check-box. All panel(s)
will be removed.

http://www.usbmicro.com/

There will be one panel for each active USB device that has been plugged into your
PC and recognized by Digio. The following picture shows a typical LED panel:

Appendix III: Legal (Kadtronix)
KADTRONIX, INC. DISCLAIMS ALL WARRANTIES RELATING TO THIS PRODUCT, WHETHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ALL SUCH
WARRANTIES ARE EXPRESSLY AND SPECIFICALLY DISCLAIMED. NEITHER KADTRONIX, INC.
NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION, PRODUCTION, OR
DELIVERY OF THIS PRODUCT SHALL BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, OR
INCIDENTAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH PRODUCT
EVEN IF KADTRONIX, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR
CLAIMS. IN NO EVENT SHALL KADTRONIX, INC.'S LIABILITY FOR ANY SUCH DAMAGES EVER
EXCEED THE PRICE PAID FOR THE PRODUCT, REGARDLESS OF THE FORM OF THE CLAIM.
THE PERSON USING THE PRODUCT BEARS ALL RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PRODUCT.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

App7: Stepper Motor Control

Online Development Notebook > Index > U4x1 Application Notes > App7: Stepper Motor Control

App7: Stepper Motor Control

VERSION 1.20+ of the firmware, VERSION 34+ of the DLL

Purpose
Provide a program that tests the control of a stepper motor through the commands
of the U401/U421/U451.

Description
This program initializes all of the sixteen i/o lines of the U4x1 to be outputs. The
lower four port pins of port A (A.0 - A.3) are "channel 1" when it concerns stepper
activity, the upper four port pins of port A (A.4 - A.7) are "channel 2" when it
concerns stepper activity.

Screen Shot
Below is the application screen as it looks when the program is first initialized. Both
ports (all of the lines) have been set to be outputs.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

"Direction" sets the direction that the stepper motor moves. The actual direction
does depend on the stepper motor wiring. The rate is the period in 128
microsecond increments, "100" in the example is 12.8 ms between each step.

The "Init" command will pass the initial step value to the motor. This is the first
positional value. While the motor is running, the direction can be changed and the
rate changed.

The Step Types are as follows:

Wave step

Step A.7 / A.3 A.6 / A.2 A.5 / A.1 A.4 / A.0
1 ON
2 ON
3 ON
4 ON

Full step

Step A.7 / A.3 A.6 / A.2 A.5 / A.1 A.4 / A.0
1 ON ON
2 ON ON
3 ON ON
4 ON ON

Half step

Step A.7 / A.3 A.6 / A.2 A.5 / A.1 A.4 / A.0
1 ON
2 ON ON
3 ON
4 ON ON
5 ON
6 ON ON
7 ON
8 ON ON

Hardware
Below is a simplified schematic to run one of the windings for the stepper motor.
The specifics of the driver circuit depend on your stepper motor.

NEVER connect the stepper motor directly to the U4x1 device, a driver circuit is
required!

Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

App8: SPI ADC

Online Development Notebook > Index > U4x1 Application Notes > App8: SPI ADC

App8: SPI ADC

Purpose
Provide a program that interfaces to an analog to digital converter through the SPI
port. This example uses the LTC1298, a 12 bit two channel ADC.

Description
This program initializes thirteen i/o lines of the U401/U421/U451 to be outputs, and
enables the SPI subsystem. The LTC1298, a 12 bit serial (SPI) A/D device, is
connected to the MISO, MOSI, and CLK lines, as well as one of the output lines.
The program selects the ADC device, selects channel 0, and reads the converted
analog value. This is repeated for channel 1.

See this small list of SPI devices for other SPI A/D devices.

Screen Shot
Below is the application screen reading some A/D values.

Hardware
The data sheet for the LTC1298 was followed for connection to the U4x1 device.
Bypass capacitors are not shown in the schematic.

guidnode://B4DE332633C9FC559D4329D328D2C9DD2861E27F
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Pin 1 of the LTC1298 is the active low chip select and is controlled by port A.4.
MOSI of the U4x1 (A.5) connects to the A/D "D in" to send a command to the A/D,
while MISO (A.6) reads the data from "D out". The SPI clock (A.7) connects to pin
7, the LTC1298's clock line.

Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

SPI Devices

Online Development Notebook > Index > U4x1 Application Notes > App8: SPI ADC > SPI Devices

SPI Devices

Example SPI devices:

ADC
Analog Devices (www.analog.com)

AD7715, AD7811, AD7812, AD7816, AD7817, AD7818, AD7853, AD7858

Burr Brown (www.burr-brown.com)

ADS1210, ADS1211, ADS1212, ADS1213, ADS1286, ADS7812, ADS7813,
ADS7818, ADS7834, ADS7835

Cirrus (www.cirrus.com)

CS5531, CS5533, CS5532, CS5534

Linear Technology (www.linear-tech.com)

LTC1091, LTC1092, LTC1093, LTC1094, LTC1096, LTC1098, LTC1197, LTC1199,
LTC1285, LTC1288, LTC1287, LTC1289, LTC1290, LTC1291, LTC1286, LTC1298,
LTC1404, LTC1418, LTC1594, LTC1598, LTC2400, LTC2408, LTC2410, LTC2420

Maxim (www.maxim-ic.com)

MAX144, MAX145, MAX146, MAX147, MAX157, MAX159, MAX186, MAX188,
MAX1084, MAX1085, MAX1106, MAX1107, MAX1110, MAX1111, MAX1112,
MAX1113, MAX1202, MAX1203, MAX1204, MAX1240, MAX1241, MAX1242,
MAX1243, MAX1270, MAX1271, MAX1400, MAX1401, MAX1402, MAX1403

Microchip (www.microchip.com)

MCP3001, MCP3002, MCP3004, MCP3008, MCP3201, MCP3202, MCP3204,
MCP3208

Texas Instruments (www.ti.com)

TLV1504, TLV1508, TLV1544, TLV1570, TLV1572, TLC1514, TLC1518, TLV2541,
TLV2542, TLV2545, TLV2544, TLV2548, TLC2554, TLC2558,

guidnode://5CB75B38C2FE96FDE9AACB9C8B1C0D518ADD6F71
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

EEPROM/Serial Non-volatile
Atmel (www.atmel.com)

AT25010, AT25020, AT25040, AT25080, AT25160, AT25320, AT25640, AT25P1024,
AT25HP256, AT45D011, AT45D021, AT45DB021, AT45DB041, AT45D081,
AT45DB161

Fairchild (www.fairchildsemi.com)

NM25C020, NM25C040, NM25C041, NM25C160, NM25C640, NM93C06, NM93C56,
NM93C66, NM93C46, NM93C56, NM93C46A, NM93C46A, NM93S46, NM93S56

Microchip (www.microchip.com)

25AA040, 25LC040, 25C040, 25AA080, 25LC080, 25C080, 25AA160, 25LC160,
25C160, 25LC320, 25C320, 25AA640, 25LC640

NexFlash (www.nexflash.com)

NX25F011A, NX25F041A, NX25F080A, NX25M

RAMTRON (www.ramtron.com)

FM25L256, FM25W256, FM25CL64, FM25640, FM25CL160, FM25CL04, FM25040

SanDisk (www.sandisk.com)

SDMB-4, SDMB-8, SDMB-16, SDMB-32

SGS Thompson (us.st.com)

M35080, M93C86, M93C76, M93C66, M93C56, M93C46, M93C06, M93S46,
M93S56, M93S66, M95010, M95020, M95040, M95080, M95160, M95320, M95640,
M95128, M95256, ST95010, ST95020, ST95040

Xicor (www.xicor.com)

X25020, X25040, X25160, X25F008, X25F016, X25F032, X25F064, X25F128

Digital Pots
Analog Devices (www.analog.com)

AD8400, AD8402, AD8403

Dallas (www.dalsemi.com)

DS1267, DS1844

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

App9: 1-Wire (MicroLAN)

Online Development Notebook > Index > U4x1 Application Notes > App9: 1-Wire (MicroLAN)

App9: 1-Wire (MicroLAN)

VERSION 1.30+ of the firmware, VERSION 36+ of the DLL

Purpose
Provide a program that interfaces to a DS18S20 Dallas/Maxim temperature sensor.
The program can also be used to discover the serial number ID of any 1-wire
device connected to the U4x1. For the sake of simplicity, this app assumes that a
single device is connected to the U4x1 pin, since it does not distinguish devices
based on their serial number.

The application code can be modified to work with other 1-wire devices. If the 1-
wire device serial number is used to address the device (rather than using the "skip
ROM" 1-wire function) then multiple devices can be used on a single U4x1 line/pin.

Description
This program initializes the selected port line/pin (selected by the pin number drop-
down in the example) as a 1-wire bus. It is assumed that for this application there
will be only a single 1-wire device located on the bus. The "Read Serial Number"
button will read the single 1-wire device on the selected U4x1 pin and retrieve the
device serial number for display.

The serial number for any 1-wire device can be retrieved with this application, not
just the DS18S20.

Pressing "Read Temp" will read the temperature from a connected DS18S20 device.
When the temperature is read, 85 degrees C is returned. This is the default temp
that is in the device, if the conversion action has not been performed. By pressing
"Start Temp Conversion" then " Read Temp" the measured temperature will be
returned. Please see the data sheets for details.

The first box contains the temperature in degrees Celsius, the second in Fahrenheit
(calculated from Celsius).

Screen Shot

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Below is the application screen reading the DS18S20 temperature value.

Hardware
The data line (DQ) of the DS18S20 was connected to a pin of the U4x1, the
grounds were common, and the VDD pin of the DS18S20 was connected to +5VDC.
A 10k ohm pull-up resistor was used on the data line.

Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

DS18S20 Sensor

Online Development Notebook > Index > U4x1 Application Notes > App9: 1-Wire (MicroLAN) >
DS18S20 Sensor

DS18S20 Temperature Sensor

App note #9 interfaces a DS18S20 Dallas/Maxim temperature sensor to a
USBmicro U4x1 device. The U4x1 provides the interfacing signal, ground, and
power for the 1-wire temperature sensor.

DS18S20 Pin Assignment
The DS18S20 comes in a small package with three electrical leads. From the
graphic below you can see that these leads/pins are labled "GND", "DQ", and
"VDD".

The GND connection (DS18S20 pin 1) is ground, and provides an electrical
reference for the other two signals. Ground on the U401 is pin 9, and ground on
the U421 is also pin 9.

"DQ" (DS18S20 pin 2) is the 1-wire data line. Any U4x1 I/O line can be configured
as a 1-wire bus to communicate with 1-wire devices. Therefore connection from the
DQ line should go to the selected U4x1 I/O line.

The general configuration for 1-wire devices is to use a bus that has ground and
data/power lines. The DS18S20, however, draws current during temperature
conversion that is higher than can normally be provided on the data/power line.
Therefore the VDD (DS18S20 pin 3) connection provides power for the DS18S20.
This line should be connected to U401 pin 7 or U421 pin 14.

guidnode://09609FC27883B28431717FB2EE377B0CDF5FBFFD
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Using Several DS18S20 Temperature Sensors
The U4x1 devices support 1-wire communication with any 1-wire device. When you
select an I/O port line of the U4x1 to use as the connection to a 1-wire device, you
have changed that line from just being a digital I/O line to a 1-wire bus. The
Reset1Wire command configures the line with a 14 kohm pull up resistor, and
issues a reset pulse on that line. The Reset1Wire command returns (via a pointer -
see the command description) an indication of the reception of the device presence
pulse.

If you select a particular line to use as the 1-wire bus, you do so with the
Reset1Wire command. A Read1Wire command or a Write1Wire command will
operate on the line that was last referenced by the Reset1Wire command.

What this means is that you can use all 16 lines on the U4x1 as 16 separate 1-wire
busses. Issuing the Reset1Wire command is the way to get attention of the 1-wire
devices on that bus, prior to using the Read1Wire and Write1Wire commands to
communicate with the 1-wire device. You can use Reset1Wire to select and
communicate with one line of the U4x1, then use it again to communicate with a
different line on the U4x1.

You can use all 16 lines on the U4x1 to communicate with 16 1-wire devices, one
per line. But you can also have multiple 1-wire devices on each line, and address

them individually by using their ROM serial numbers. The 1-wire device
documentation contains the details that you need to communicate with 1-wire
devices.

The internal 14 kohm pull up resistor will suffice for a short bus distance, but you
should consider supplementing with a 10 kohm resistor external to the U4x1
device. The 10 kohm resistor would be connected between the 1-wire data line and
Vcc (+5V).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

AppX: OSX Interface

Online Development Notebook > Index > U4x1 Application Notes > AppX: OSX Interface

AppX: OSX Interface

Mac OSX Example code for Xcode is included in the application files. See Download
Files.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

App11: Home Domination

Online Development Notebook > Index > U4x1 Application Notes > App11: Home Domination

App11: Home Domination

Purpose
Introduce a commercial home automation program.

Description

Home Domination is Windows home automation software that supports the U401
and U421 devices. With Home Domination you can create powerful macros that can
be triggered by inputs connected to U4x1 devices as well as by X10 signals or
trigger at selected times. You can control U4x1 devices or X10 devices and there
are numerous other macro actions that let you take snapshots from video devices,
send email, play sounds, start other programs, and more. It has a remote client as
well so you can control your U4x1 devices from anywhere in the world!

Home Domination Screen Image

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Hardware
The U401 or U421 USB Interface devices can be used to control low voltage wiring.
The U401 and U421 USB Interface can be used to attach 1-wire devices (from
Dallas Semiconductor). Currently, there is support for the DS18S20, DS18B20, and
DS1822 temperature sensors.

Obtaining Home Domination
StrandControl (www.homedomination.com) sells the U401 and the U421. They can
be purchased with the home automation software, or separately.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.homedomination.com/

Amp It Up!

Online Development Notebook > Index > U4x1 Application Notes > App11: Home Domination> Amp
It Up!

Amp It Up!

This app note created in part by StrandControl and those parts are used with
permission.

Introduction
This tutorial shows how you can build a small relay interface board so that you can
use the U4x1 devices to control circuits that require more current or a higher
voltage than what the U4x1 devices can provide directly. This tutorial is meant to
help anyone using the U4x1 devices with custom software, or with Home
Domination. The design can be implemented as is, or it can provide a starting point
for more complex implementations.

Design Overview
The U4x1 devices have a limited ability to provide current when their i/o lines are
configured as outputs. The i/o lines should not be connected to voltages higher
than 5V.

A relay provides a way to control (switch on or off) devices with voltage and
current ratings that are greater than the capabilities of the U4x1. The relay in this
design can switch a 30V (maximum), 1A (maximum) circuit. The 5V relay coil uses
about 40 mA of current provided by the Darlington switch in the 2803.

This application consists of a small circuit card containing screw terminals to
interface to a U401 or U421 as well as the controlled circuit, the 2803 driver,
relays, and relay state indicating LEDs. The card developed in this application
provides four channels of relay control.

Schematic

http://www.homedomination.com/
guidnode://CC02B97103B20D24AC55A301A84E9E59DAF2F709
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

The schematic above shows one of the four relay/LED channels implemented in this
design. The 2803 makes a switched connection to ground. When activated, current
flows through the relay and activates the relay contacts. The LED associated with
the relay is also turned on.

Project Parts

The relay board can be assembled in many different ways. A specific custom

printed circuit board could be designed with a PCB layout program. The PCB could
then be ordered from a PCB production house.

For this app note, however, I chose to use point-to-point wiring on a simple
prototype PCB board. The board provides a "sea of holes" that are on one tenth
inch centers. The components that I chose for this application have leads that have
the same spacing.

Pictured above are all of the components for the example prior to assembly. The
yellow wire in the photo is a short piece of Wire-Wrap wire that I used for all of the
point-to-point connections. I didn't wire wrap the circuit, I just used Wire-Wrap wire
to make the point-to-point connections.

Description Part Number Source

 PCB 14167-PB Marlin P. Jones
(www.mpja.com)

 TQ2-5V Relays 255-1001-5-ND Digikey
(www.digikey.com)

 Screw terminals 277-1274-ND Digikey
(www.digikey.com)

 ULN2803 ULN2803AP-ND Digikey
(www.digikey.com)

 24 pin DIP socket AE8918-ND Digikey
(www.digikey.com)

 18-pin DIP sockets AE8924-ND Digikey
(www.digikey.com)

 1k resistors unspecified Digikey
(www.digikey.com)

 LEDs unspecified Digikey
(www.digikey.com)

 Wire-Wrap wire
 or suitable 30 gauge wire

 unspecified Digikey
(www.digikey.com)

The majority of the parts are components that I keep in stock for general prototype
use. The specifics about which DIP sockets, resistors, and LEDs to use do not
matter much to this design. A different size or type of PCB board could be used,
larger or different color LEDs, and even different types of relays. Consideration
should be made for driving the relays with the right voltage and sufficient current.
Parts appropriate for this app note can be obtained from a variety of vendors.

http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.digikey.com/
http://www.mpja.com/

The circuit card is from Marlin P. Jones (www.mpja.com). It is #14167-PB. MPJA
can also provide some of the other components, such as LEDs.

The relays are NAIS TQ series relays. The relays that I chose to implement in this
design are TQ2-5V. The screw-terminals in the photo above (green) have .1 inch
spacing between the leads. I use a small "precision" screwdriver with these screw
terminals, since they are rather small. These relays and terminal blocks are
available from Digikey (www.digikey.com). The relays are Digikey part number
255-1001-5-ND, the screw terminals are 277-1274-ND. Most of the parts (other
than the PCB) for this project can be obtained from Digikey.

Larger screw terminals are also available that have .2 inch lead spacing. They can
still be used with the PCB described in this project.

The relays used in this app note switch 30V max 1A max. The coil voltage for the
relays is the 5V from the USB supply. The coils use 40mA.

A relay that can switch more current (5 amps) such as the Omron G6DS-1A-DC5
(Z2317-ND at Digikey) could also be used. This relay has a different form-factor,
and therefore will not fit into the DIP sockets.

Relays that use a coil voltage higher than the 5V supplied by USB would need to
have that voltage supplied by a different power source. Using a relay such as the
Panasonic DR-12V would mean adding another screw terminal to the design to
provide a source for the coil's 12V.

The coils for the relays are switched by the 2803. The maximum current that the
2803 can switch is in the 2803 data sheet for the manufacturer of the specific
2803. This defines the limits to the current and voltage of the relay's coil.

Placement
The PCB needs to be large enough to comfortably hold the components. This PCB
has holes in a 24 by 31 pattern, minus nine holes in each corner. The holes are on
a .1 inch center spacing pattern.

http://www.digikey.com/
http://www.mpja.com/

The corner holes are 1/8th inch mounting holes.

I was confident that the board that I selected would have enough room to hold all
of the components. I placed the components on the board to play a bit with the
orientation. I chose the "portrait" orientation pictured above.

Assembly
The sockets, terminals, LEDs, and resistors were soldered in place on the board.
Each component lead is soldered in place to the copper donut on the back of the
PCB. That copper will hold a small amount of solder that makes an electrical
connection to the component lead.

The Wire-Wrap wire is cut to length for each particular point-to-point connection. A
small amount of the insulation is removed from each end of the wire. The solder on
the donut/lead is heated with a fine-tip soldering iron and the lead is inserted into
the melted solder. Most connections are only a single wire attached to a lead. Care

must be made to not lose a previous connection when an additional wire is added
to a connection that needs two wires.

Black, red, yellow, and bare Wire-Wrap wire was used for all of the point-to-point
connections as can be seen in the photo and graphics above. Bare wire was used
for the short connections where convenient.

Final Hardware and Test

Once assembled, 5V and ground were applied to the board. Each relay/LED was
tested by applying 5V to the input/control line of the 2803.

Connnection of the Relay Board to a U4x1

The relay board can be connected to either a U401 or a U421. The top set of screw
terminals should be connected to the U4x1, while the side screw terminals connect
to the circuit that the relay board controls.

"Ground" and "power" connect to the U4x1 ground and +5V respectively. The relay
control lines, A, B, C, and D connect to the data lines of the U4x1. The U4x1 data
lines would be set to output.

Home Domination can now control higher voltage/current devices.

Controlling the Relay Board in Home Domination
To use the relay board in Home Domination, it's best if you plug in the U4x1 and
relay board before you start Home Domination. Then, when it starts, it will
automatically detect all the devices. Then, you should start Home Domination and
click Setup, then click Device Setup. Click the + sign next to "U401/U421 Direct
I/O" and you should see a listing for each U4x1 device attached. The following
example shows what it will look like if you have 3 devices.

Now click the + sign next to one of the devices you want to configure. You should
see something like the following, where you have two ports, A and B, and each port
has 8 data bits. Initially everything will be set as Input.

To control a relay you will need to change it to Output and add a "Switch" so it will
show up in the switch tab on the main dialog, configured so it can be controlled. To
change a bit to output or to add a sensor or switch, just double click on a bit, or
single click and click Change. Then select Output. You can change the On Value

and Off Value in case the device you have attached uses inverted logic, and you can
change the value that it will default to on startup.

This example shows how to set it up so you can control the relay labeled
"doomsday device", which is of course quite necessary if you want to use Home
Domination and this relay board to dominate the world. When you click Add
Switch, the following window will appear:

A paddle switch is for devices where one bit is pulsed on and off to turn the device
on and another bit is pulsed on and off to turn the device off. A regular switch uses
only one bit and it simply turns it on or off.

When you click Switch and then click Select, the following window appears with the
Device Type, Port and Bit already filled in for you, so all you have to do is set the
name to what you want and click OK and it will add it for you.

When you click Add Sensor, you will get a similar dialog. If you're curious what
those other fields are for, or wondering how to set up a paddle switch, just click F1
when you're on that window and it will tell you all about it.

If you want to change all 8 bits to output or back to input, you can do it easily by
selecting the Port (A or B) and clicking Change. This will bring up the following
window where you can change the Input or Output type, and it will automatically
change it for all the bits. Here you also have the option of treating the port as a
single number rather than individual bits. This may be handy if you want to use
the U4x1 to pass in a numeric value, perhaps for analog to digital applications. The
value can be used in macros by using the compare ability in a sensor trigger.

Once you've set up all your sensors and switches in this way, they will appear on
the Sensors and Switches tab. If you have the remote network client set up, then
you can detonate your doomsday device from the safety of another country, or you
can create a macro to watch one of your sensors and detonate the device when Mr.
Bond approaches it without using his fancy gadgets. Remember, doomsday devices
may harm the environment, so you might want to consider taking over the world
with annoying noise instead.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

Temp Sensors

Online Development Notebook > Index > U4x1 Application Notes > App11: Home Domination>
Temp Sensors

Temp Sensors

This app note created by StrandControl and used with permission.

This app note deals with how to set up a temperature sensor using StrandControl's
Home Domination.

Hardware Setup

Home Domination can support several types of 1-Wire temperature sensors from
Dallas Semiconductor. Currently, the DS18S20, DS18B20 and DS1822 are
supported.

Techy Tidbit: The DS18S20 and DS18B20 are accurate to +- a half degrees Celsius.
The DS1822 is less accurate, within +- 2 degrees Celsius, but is cheaper. The
DS18S20 reports the temperature in half degrees Celsius (roughly 1 degree
Fahrenheit) and the DS18B20 and DS1822 report the temperature in 16ths of a
degree Celsius (about a 10th of a degree Fahrenheit).

To attach the temperature sensor to the computer, you'll need to attach it to one of
the USB interfaces devices from USBmicro: U401, U421, or U421-SC3. They all
work identically, however the U401 is in a "SimmStick" format which is about a 1
inch (26 mm) wide by 3.5 inches (88 mm) long. The U421 is in a "DIP-like" format,
which is about 3/4 of an inch wide (19 mm) by about 1.5 inches long (38 mm). The

http://www.homedomination.com/
guidnode://CC02B97103B20D24AC55A301A84E9E59DAF2F709
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

U421-SC3 is identical to the U421 except that it has a screw terminal soldered onto
it so you can attach temperature sensors without having to solder. To use the
screw terminals, you'll need a very small screw driver like the kind you use on eye
glasses.

First, you'll need to find out which pins on your temperature sensor are the Power
(VDD), which is the Ground (GND) and which is the Data pin (DQ). Use the
following links to get to the technical information for your temperature sensor.

DS18S20: pdfserv.maxim-ic.com/en/ds/DS18S20.pdf

DS18B20: pdfserv.maxim-ic.com/en/ds/DS18B20.pdf

DS1822: pdfserv.maxim-ic.com/en/ds/DS1822.pdf

Then you'll need to solder the temperature sensors to the appropriate pins of the
U401 or U421, or you can use the screw terminal on the U421-SC3 or solder it into
one of the other pins. See the section below for the USBmicro device you have to
determine what pins to use.

You can attach multiple temperature sensors to the same data pin (with version
148 or greater of Home Domination). So in the case of the U421-SC3, you can
attach multiple temperature sensor devices using the same screw terminal. Also, if
you want to have several temperature sensors throughout the house, you can
attach them to the same wire in different locations. According to Dallas
Semiconductor's 1-Wire documentation, the distance can be up to 300 meters with
a suitable master circuit.

If you purchase a USBmicro device on or after January of 2006 (firmware version
1.46 or greater) you can wire all the temperature sensors at once, and when you
install them in Home Domination, all of the devices on the wire will be listed, and
you select each one. If you have an older USBmicro device, you can still use
multiple temperature sensors on a single wire, but you will need to attach them one
at a time and add them into Home Domination, making sure to select the ID that it
reads. Once all the temperature sensors you intend to use on the wire have been
individually added to Home Domination, you can then wire all the temperature
sensors to the same data pin.

U401 Pinouts

http://pdfserv.maxim-ic.com/en/ds/DS1822.pdf
http://pdfserv.maxim-ic.com/en/ds/DS18B20.pdf
http://pdfserv.maxim-ic.com/en/ds/DS18S20.pdf

Pin 1 on the U401 is located on the left, as you look at the board in the orientation
above. Pin 30 is the pin on the far right. Note that all lines extend from J1 to J2.
There are then some J1 lines that only connect to J2, and no other circuitry.

See U401 Pinouts.

U421 / U421-SC3 Pinouts

guidnode://77C73137CC55E00A9822CB0602925DE5D1AC9074

Except for the screw terminal, the U421 and U421-SC3 are exactly the same. Pin 1
on the U421 is located on the lower left, as you look at the board in the orientation
above. Pin 24 is the pin on the upper left. The lower row therefore is 1-12, the
upper row is 24-13.

See U421 Pinouts

U451 Pinouts

guidnode://7442EEF5F8286E581CC15332502AAA1A4DD6374D

Temperature sensors can be connected to Port A, bits 0 - 7. Port B, bits 0 and 1
control the on-board relays, and Port B, bits 2 - 7 can be tied directly to additional
external 5V relays.

Setting Up Temperature Sensors in Home Domination
To add a temperature sensor to Home Domination, it's best if you have a
temperature sensor already connected to a USBmicro USB controller and have the
USBmicro controller plugged into the computer before starting Home Domination.

If you're creating a new control file, on the "Choose Computer Interfaces to
Use" dialog, simply check the "1-Wire Temperature Sensor" check box. This will
add a temperature sensor using the first USBmicro device it finds, using data bit 5
(the one that the screw terminal is set up for on the U421-SC3). It will also add a
sensor so it will appear in the sensors tab. If you need it to use a different
USBmicro device or a different data bit, then click the Device Setup, look for the
"Temperature Sensors (1-Wire)" line, click the + so the devices show, select the
device, and click Change. Here you will be able to change the device or pin that is
used, and you can also change whether it uses Celsius or Fahrenheit, and you can
change how often it checks for temperature changes. It takes about a second for it
to read the temperature, so you cannot check the temperature more than once per
second.

If you already have a control file set up, you'll need to go under Setup, then
click Device Setup, select the "Temperature Sensors (1-Wire)" line, and then click
the Add button. This adds a temperature sensor device that uses the first
USBmicro device, and data bit 5. To change this, click the + button to show the
devices, highlight the device and click the Change button. Then change the
USBmicro device or the data bit to use, or whether to use Celsius or Fahrenheit,
and you can change how often it checks the temperature.

If you want to use multiple temperature sensors on a single data pin, each
temperature sensor will have to be added as a separate temperature sensor device,
but you will specify the same USBmicro device and data pin. In order for it to work
correctly however, you will need to assign the specific device id for each
temperature sensor.

If you have a USBmicro device that was purchased on or after January of
2006 (firmware version 1.46 or greater), when you can click change on a
specific temperature sensor under the "Temperature Sensors (1-Wire)" line, it will
show you the ids of all the 1-Wire devices that are connected to a particular data
pin. If you change pins, you will need to click the Update button to rescan the
device. Select a serial number in the "Connected 1-Wire Device" list and click
Select. This will instruct Home Domination to use that particular sensor when
checking its temperature. Each temperature sensor should select a different serial
number to use.

If you have a USBmicro device that was purchased prior to January of

2006 (with a firmware version < 1.46), you can still use multiple temperature
sensors on a single wire, but it's more difficult to set up. You will need to only
attach one temperature sensor to the wire at a time until Home Domination has the
serial number for each device selected. To set up temperature sensors, you would
still add a separate temperature sensor device for each device on the wire, but you
must do it one at a time. This will read the serial number of the device on the wire,
and then you can select it. Then you would remove that device from the USBmicro
device, attach the next temperature sensor to use, edit your next temperature
sensor device in Home Domination and select the serial number to use (it can list
only one). Once all of the temperature sensors have individually been set up, then
you can attach all of the temperature sensors to the same wire, and it will use the
previously detected id to individually address each temperature sensor.

You can change the name of the temperature sensor that gets added by clicking
change on the Sensors tab, or you can do this under Setup and click Sensors and
Switches. You can use this sensor in macros too. If you want a macro to act as a
thermostat, you should set up two macros--one to turn a heating device on when
it's below a certain temperature, and another to turn the device off when it's above
a certain temperature (and vice-versa if it's controlling a cooling device).

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App12: Large LED Display

Online Development Notebook > Index > U4x1 Application Notes > App12: Large LED Display

App12: Large LED Display

Purpose
Replace the matrix keyboard that controls a large scrolling LED sign with a U4x1
device. The benefit is that the LED sign is no longer a stand-alone device, but can
now be controlled by a PC.

This project was done by Duncan Short in the United Kingdom.

Old Matrix Keyboard

The original matrix keyboard attached to a sixteen position connector. A key press
on that keyboard connected two of those sixteen lines together.

Design

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

Two 4051 switches will make the key contact connections on the keyboard. The

graphic above shows the connections that were made to the U401, the keyboard
connector of the large LED display, and to the 4051 switches. Analysis was done to
the keyboard connector to find which pins were "row" pins and which were
"column" pins of the matrix.

The row and column groups were highlighted in pink and yellow. The row/pink pins
connections were assigned to one 4051, while the column/yellow connections were
assigned to the other 4051. A connection between a specific row and column will
generate a specific keyboard character.

The U401 controls the 4051 devices. Data lines D0, D1, and D2 select the column.
Data lines D3, D4, and D5 select the row. D15 enables the signal path of both of
the 4051 devices to generate a keystroke.

A PC program can control the U401/4051 circuit based on the key presses of the
keyboard attached to a PC. The PC program could also be designed to read a file
and display the file contents on the large LED display.

Result

Special thanks go to Duncan for developing this application and for sharing the
pictures!

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App13: Angle Sensor

Online Development Notebook > Index > U4x1 Application Notes > App13: Angle Sensor

App13: Magnetic Angle Sensor

Purpose
Use the U4x1 USB interface to read data from a SPI device to measure the angle of
a magnetic field.

Design
Interface a Philips KMZ43T magnetic angle sensor and a Philips UZZ9001 signal
conditioner combination to a U4x1 USB device. The Philips UZZ9001 has an SPI
interface which is compatible with the U4x1.

Result

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

From Orion Propulsion:
Kudos for your U421 product.

We needed a way to measure changes in the magnetic flux angle in a terfenol-d
experiment for NASA. We selected the Philips KMZ43T sensor and UZZ9001 signal
conditioner combo to measure the angle and the U421 USB discrete I/O device
from USBmicro to interface the Philips parts to our PC USB port. The UZZ9001 has
an SPI interface which was very easy to connect to the SPI port on the U421 and in
no time at all we had the hardware breadboarded. For the basic software we found
a similar project (#8) in the ODN which was easily modified to provide the initial
code for testing and had this running in less than a day. Having unsuccessfully
attempted several USB-based projects before, I was impressed by how easy it was
to develop a USB based project using the USBmicro U421.

Herman Pickens
Orion Propulsion Inc.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

App14: 2-Wire to PCF8574

Online Development Notebook > Index > U4x1 Application Notes > App14: 2-Wire to PCF8574

App14: 2-Wire to PCF8574

Purpose
Provide an example to interface the PCF8574 to a U401/U421/U451. The PCF8574
is an 8-bit I/O expander that can connect to the 2-wire bus of the U4x1. Since
eight of these devices can be added to the 2-wire bus, the number of inputs or
outputs of a single U4x1 can be expanded by eight devices with eight I/O lines, or
64 lines total.

Description
The 2-wire capabilities of the U4x1 allows it to interface to the Philips I2CTM devices.
The two 2-wire commands can be used together to provide the signaling needed to
conform to the signalling needed for the I2C protocol. The 2-wire bus of the U4x1
consists of two open-drain signal lines from port A (or port zero if you want to call it
that). Specifically PA.3 is the 2-wire data line, while PA.2 is the 2-wire clock line.

This application example expands the number of output lines of the U4x1 by eight
by using a single PCF8574.

Hardware
Below is a schematic appropriate for this app note. The circuit uses the two 2-wire
lines of the U4x1 (in this case a U421) to control a PCF8574. The PCF8574 will be
used as output port expansion in this case. All eight output lines of the PCF8574
directly drive LEDs.

The three address lines of the PCF8574 are tied to ground, making the device
address 000 in binary. Since the 2-wire bus is an open-drain bus, two 4.7 kohm
resistors pulls the lines to 5V. The clock and data lines of the 2-wire bus will either
pull the line low, or will float open allowing the resistor to pull the line high.

For more information on the PCF8574 and on the other Philips I2CTM devices that
the 2-wire interface can drive, pleas do a big old Google search. There are a LOT of
different I2C devices, and a lot of information on the web about this type of 2-wire

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

protocol.

Expanded Hardware
Below is a schematic of the same type of system, but it uses three PCF8574
devices. Each of the three devices has a different address, set by the lines A0, A1,
and A2.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

App14: VB6 using USBm.dll

Online Development Notebook > Index > U4x1 Application Notes > App14: 2-Wire to PCF8574 >
App14: PCF8574 output using VB6 and USBm.dll

App14: PCF8574 output using VB6 and
USBm.dll

VB Project
This example demonstrates control of a PCF8574 using Visual Basic 6. This VB
project builds on the established code base of all of the other example VB projects.
The specifics for interfacing to the PCF8574 are described below.

2-wire interface support is in USBm.dll version 65 or newer. You must also use a
device with version 3.35 of the device firmware in order to have the 2-wire
functionality.

Send a command to the U4x1
' Write to PCF8574
Private Sub Write8574_Click()

guidnode://399CD3D21798B5F992BD8783786757EBF5B24BD6
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

 ' Send init control signal (both lines high)
 USBm_Wire2Control selectedu4x1, 0

 ' Send start control signal (drop data line low)
 USBm_Wire2Control selectedu4x1, 1

 ' Send address byte
 dataarray(0) = 0
 dataarray(1) = 1
 dataarray(2) = &H70
 USBm_Wire2Data selectedu4x1, dataarray(0)

 ' Send data to light up the LEDs
 dataarray(0) = 0
 dataarray(1) = 1
 dataarray(2) = ReturnHexByte(Write0Value.Text)
 USBm_Wire2Data selectedu4x1, dataarray(0)

 ' Send stop control signal (clock high, then data high)
 USBm_Wire2Control selectedu4x1, 2

 State = ReturnHexByte(Write0Value.Text)

 End Sub

This code illustrates the steps needed to address and control the PCF8574.

The VB6 code fragmant above sends a byte to the PCF8574 to display on the LEDs.
Assuming that the hardware is as described in the hardware section of this app
note, then PA.3 of the U4x1 is the 2-wire data line, while PA.2 is the 2-wire clock
line. These connect to the PCF8574 chip.

The first command in the program listing above distinct to 2-wire control is the init
command USBm_Wire2Control selected4x1, 0. The Wire2Control function sends
one of several conditions to the two port lines. Three different ones are used here
in this code fragment. The first one initialized the port to be open drain and allows
the output to be pulled high by external pull-up resistors.

The second Wire2Control command is the command that acts like the "start"
condition for I2C. The third Wire2Control command is after the byte writes and
makes the two 2-wire lines act like the "stop" condition for I2C.

After the I2C start conditon and before the I2C stop condition the code fragment
sends out two clocked bytes using two calls to the USBm_Wire2Data command.
The first byte correctly addresses the PCF8574 (see the data sheet for details) and
the second byte is the pattern to display on the LEDs.

Download Code
Download all application files: (all application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/appfiles.zip

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

App17: REALBasic OSX Temperature

Online Development Notebook > Index > U4x1 Application Notes > App17: REALBasic OSX
Temperature

App17: REALBasic OSX Temperature

Purpose
Provide an example of using REALBasic to use a U4x1 with OSX.

Description
The capabilities of the U4x1 allows it to interface to 1-wire temperature sensors.
Dallas DS1822 sensors, specifically for this example. Other similar sensors could be
used with minor code changes. This example assumes that there is a U401, U421,
or U451 device on the Mac USB port, and that the pins of port 1 are connected to
DS1822 sensors.

Software

REALBasic is used, along with a package called MonkeyBread, to make this
application. The MonkeyBread plug-in costs $28 at the time of this writing for the
USB plug-in. This gives the REALBasic code writer a leg up on Mac USB interfacing.

guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
http://www.usbmicro.com/index.html

The first task is to initialize the U4x1 structure. This looks for the first U4x1 and
then connects to it. It also installs a callback for the reply messages.

Next is opening the specific U4x1 to communicate with, and grab a bunch of the
device data.

Sending a USB message depends on more of the MonkeyBreak plug-in support.
Here is code covering the transfer of data to the U4x1:

The Callback routine that stores the USB message content into a set of bytes:

These are some parts of a state machine that sends messages to the U4x1 device
and processes the device replies:

The REALBasic code cycles through a large state machine scanning each of the
DS1822 devices for temperature and putting the information in text boxes.

I cross-compile, so that is why this development window looks very much unlike
OSX. :-)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

FAQ

Online Development Notebook > Index > FAQ

Frequently Asked Questions

Why does the strobe function only strobe correctly after the first use?

The strobe byte write places a byte at a port (either A or B) and then toggles a
single line on the other port. If set up to strobe the line "negative", the line will be
set low, then high. If the line is not initially set high, the strobe will not function
correctly the first time.

The strobe function doesn't set the initial state of the line. If you wish to have that
line strobe from high to low and back to high ("negative"), then set the initial state
of the line to high. The strobe function returns the line high when done.

If you wish to have that line strobe from low to high and back to low ("positive"),
then set the initial state of the line to low. The strobe function returns the line low
when done.

One or more of the bits that I forced to 0 in the "AND term" of the bit
writing command are set. Why did this happen?

Look at your OR term. The AND term is performed first, but is modified by the
OR term. As an example, the command 03-00-01-00-00-00-00-00 will set the
lowest bit despite the AND term wanting to turn it off.

If you use the USBm DLL the function call would be "WriteABit(device, 0x00,
0x01)".

I'm trying to write to the LCD, but the lines RW, RS, and E and the data
port never change. What is wrong?

The LCD commands do not set the direction of the lines. Use the direction
command to set these lines to outputs.

http://www.usbmicro.com/index.html

I'm getting the message "apigid32.dll not found" on a Windows PC.
What is wrong?

Take a look at the U4x1 Programming Overview section. You need to download
and include the library file. The DLL should be copied to the Windows system
directory.

Why is the USB cable attached to the U401/421? Couldn't you make
the device with a USB connector?

There is a requirement that this type of USB device must have a captive cable
(like a USB mouse) and cannot use the "USB B" jack.

Can more than one function, such as SPI, stepper, 1-wire, inputs, and
outputs operate simultaneously?

Yes.

I'm getting the message "USBm.dll not found". What is wrong?

Take a look at the USBm DLL Programming section. You need to download and
include the library file. The DLL should be copied to the Windows system directory,
or the same directory as the application.

Does the U421 work like the U401?

The U421 has a different product ID, but otherwise performs like a U401. The
PCB differences are the main changes between the products.

What are the necessary steps to set a bit on a port?

First call USBm_FindDevices() or the same function as a VB call. This
function call into the dll will find all of the U4x1 devices available on the bus. The dll
has an internal table of all of the U4x1 devices that it finds, with the first device
that it finds being number 0, the next device is number 1, the next is number 2...

The DLL does NOT access any other USB devices. You can have a mix of U4x1 and
other devices - the dll is only concerned with the U4x1 devices.

To access a particular U4x1 (device) you would reference the device number. If you
have a single device, the device number would be 0. With four devices you would

guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://0C82D9D7621067A456A8E43956990AAB4A4FC100

be able to access device number 0, 1, 2, and 3.

[You can confirm the number of devices with the function
USBm_NumberOfDevices(). It will return the number of U4x1 devices that the
dll is able to detect.]

If you then call USBm_DirectionA(0, 0xFF, 0xFF) you will be setting port A (D0
through D7) of device 0 to outputs. A call to USBm_SetBit(0, 3) after this will set
D3 high, and a call to USBm_ResetBit(0, 3) will set D3 low.

When there is only one U4x1, what is the device number that is needed
in the dll function calls? Is it zero, because it is the first and only
USBmicro device, or does it depend on its position between other USB
devices?

If you have one device, it is 0. The dll doesn't care about the device position, it
just finds all U4x1 devices and numbers them starting at 0.

The call to USBm_DeviceValid() (or the same function as a VB call) will be useful
if you expect the user to remove a device when the program is operating.

If you have three U4x1 devices, for example, you might have red LEDs attached to
one U4x1, green to the next, and blue LEDs attached to the last U4x1. To make
sure that you can always access the correct U4x1, you would query the unique
serial number of the device during development and maintain that association. So if
a device with serial number "12345678" has the red LEDs it could be device
number 0, 1, or 2, depending on the hub port order. This could change when you
rearrange devices (swap USB ports). There are functions in the dll that help sort
out the potential confusion by returning the unique serial number.

Can you use the 1-Wire function for one pin and still do the direct I/O
for all the other pins?

Yes. You can "mix-and-match". You can also hang multiple 1-wire devices from
the SAME pin, provided that you learn their ROM (serial) numbers ahead of time
and use the ROM-address (not "skip ROM") addressing function to distinguish
communication to each device.

I want to communicate with a SPI device using the U4x1. Do I send
commands using SPIMaster and then read the result using SPISlaveRead?

If you are interfacing a SPI device such as an A/D or an EEPROM, you would
use only the SPIMaster command. SPIMaster will write and read bytes
simultaneously on the SPI bus. You may need to write a dummy byte, or discard a
returned byte as the case may be for your specific SPI device.

The SPISlave commands are used when the U4x1 is expected to behave as if it
were a SPI device for another master SPI device.

I want to interface to a simple SPST switch. How can I enable the
internal pull up resistors?

There is a port configuration mode that will turn on the internal pull up
resistors. The port would be configured to enable these pull up resistors and the
switch would be connected between the port and ground.

USBm_DirectionA(device, dir0, dir1) (or the same function as a VB call) is the
command to set port direction for all eight bits on a port. For example, to set all
pins in the port to input without the pull up, set dir0 = 00h and dir1 = 00h.

To enable the pull up on all of the pins of port A, send the USBm_DirectionA
command with dir0 = 00h and dir1 = FFh and also the USBm_WriteA command
to set the lines high (FFh). The port will still be input, but will have the pull up
resistors enabled.

New: Use the DirectionAInPullup or DirectionBInPullup commands in version 65 or
higher DLL.

My U401 doesn't look like some of the pictures. Is it missing a chip? Is
it missing other parts?

The early U401 devices were populated with a DIP (dual in-line package)
microcontroller, as pictured below.

U401 front view, older style with DIP U401 chip

The next U401 devices are populated with a surface mount technology (SMT)
microcontroller, as pictured below.

U401 back view, newer style with SMT U401 chip

The newest U401 devices.

Newest U401 (Rev 3) front view. This newest U401 has a lightweight and removable USB
cable.

Only one of these types is needed. All new U401 devices use the SMT
microcontroller, so no DIP package will be on the front.

All U401, U421, and U451 devices are tested prior to shipping.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

Misc Applications / Information / Tools

Online Development Notebook > Index > Misc Applications / Information

USBmicro Misc Applications /
Information / Tools

This On-line Development Notebook (ODN) also captures some misc information
that has to do with embedded engineering. Information here may be original and
unique, or may be culled from previously published sources. Some of this includes
partial designs, prototypes, tools I have made, etc.

All misc application files: (all misc application files)

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/miscapp.zip
http://www.usbmicro.com/index.html

Under $20 Hot Air Soldering

Online Development Notebook > Index > Misc Applications Information > Under $20 Hot Air
Soldering

USBmicro's Under $20 Hot Air Soldering

This app note involves using very inexpensive hot air soldering equipment. Using
the methods mentioned in this app note, surface mount soldering becomes easier
for small shops and hobbiests.

This is how I created the (probably) worlds-first air-pencil soldering iron for under
$20. (Early 2001)

On the PICLIST the discussion of surface-mount soldering has often, uh, surfaced.
People have talked about using a toaster oven as a reflow oven. With a little effort,
this method works. You can pick up a new oven for $50. A used oven even less.
This is a nice low-budget solution.

But this is about a different surface-mount soldering method. I have used a hot-air
soldering tool at work that melts solder with softly moving air at about 250 degrees
Celsius. This cool tool will set you back a cool $1000 or so.

So how can you make one for almost pennies? Well it turned out to be very simple.
And inexpensive.

The "Under $20 (USD) Air-Pencil Soldering Iron" is made from a desoldering iron
and an aquarium air pump. I purchased a RadioShack® 45-watt desoldering iron
(64-2060) for $9.99 (USD) and removed the vacuum bulb. I then attached the air
pump (about $8.00) tube to the location that the bulb had occupied. I needed to
melt the end of the tube slightly to get it to fit over the end of the metal tube.

At this point if you plug in the iron and pump, the iron will heat and warm air will
eventually come out. This air just isn't hot enough to melt solder. But here is the
trick to get it to work. Remove the hollow iron tip and stuff a small piece of steel
wool into the open end. This will slightly restrict the air flow. But the steel wool will
heat to the temperature of the iron and transfer the heat to the stream of air. The
steel wool provides more hot surface area for the air stream to interact with. Put
the tip back on.

Below are two pictures from a video capture of this setup.

http://www.piclist.com/
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
http://www.usbmicro.com/index.html

Notes

C. A variety of bulb-type desoldering irons may work for this application. This
iron is a 45W unit.

CI. If you have access to paste-solder this may be easier to use than roll
solder. If you use roll, use the thinest that you can find.

CII. Leave the air pump running after you have shut the iron off. This will
prevent the hose from melting off. You may wish to add a speed control to the air

pump and perhaps a temp control to the iron. Silicone airline is another possibility.

CIII. Experiment with the steel wool grade of courseness for most efficient
effect. Stainless steel wool has been suggested by Don Hyde for longer life. I have
even tested this with brass and copper shavings. Experiment with the amount of
wool stuffed into the opening.

CIV. If you invert a clothes iron and set your PCB on the hot surface to pre-
warm the board, this will assist in the soldering process. The iron can be set to its
"coolest" setting, to avoid burning your fingers...

CV. Please feel free to email me if you have any ideas to add to this
application.

This creation is dedicated to my 4-year-old son's fish Sam and Julia, who passed
away but donated their pump to science... and to Roman Black who prompted me
to prove that this was possible.

I now use a hot air gun made by MPJA (www.mpja.com 15159-TE MPJA 306 Hot Air
Gun). The hot air gun provides control over the temperature of the exit air, as well
as the rate of air flow. The temp ranges from 80F to 1050F and the air flow is
adjustable up to 15cfm. Certainly not "under $20", but well worth the price of
$79USD.

The picture below is from a quick test of the air gun. Works rather well, even if in
my haste I fudged the left two pins with my thumb. This is a 128-pin package. (I
should have cleaned the flux from board before the photo, but as I said it was
meant to be a quick test.)

I cleaned the board, added liquid flux, positioned the part, then ran a thin bead of
paste solder along the pins. I ran the hot air gun along the pins, left to right,
pacing the rate that I moved the gun to match the rate that the solder was melting
and wicking up to the pin/pad contacts. In 3 seconds these 38 pins were soldered.

I find the performance of the gun to be on-par with the commercial, very expensive
hot-air soldering tools. Many different nozzles are available for the MPJA gun to
match the SMD device type.

With any soldering, contact or hot-air, I can't stress enough that the parts should
be cleaned as much as possible prior to soldering.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

Atmel AVR Article

Online Development Notebook > Index > Misc Applications Information > Atmel AVR Article

USBmicro's Atmel AVR Article

Rapid Application Development: Race Against the
Clock
The Atmel Application Journal for Spring of 2004 has an article on development of
an AVR A/D SPI slave device. The AVR was used to make an eight channel A/D
device that can be used with the U4x1 so that eight channels of analog information
can be gathered using this combination of devices.

The source code for this article and additional information are available here (Atmel
Application Journal Zip File). The zip file contains the schematic, photos, screen
captures, and device source code.

(No. The guy holding the light bulb in the article is not me...)

Personal photo of development tools. Caffeine optional.

Prototype USB AVR programmer and circuit board.

http://www.usbmicro.com/apps/miscapp3.zip
http://www.usbmicro.com/apps/miscapp3.zip
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
http://www.usbmicro.com/index.html

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Resistor Drawer Labels

Online Development Notebook > Index > Misc Applications Information > Resistor Drawer Labels

USBmicro' Resistor Drawer Labels

I don't have any difficulty remembering the resistor color code. Many people do,
however. While working for a company about a dozen years ago I had planned to
create some color labels for the resistor drawers in the company proto lab. The lab
drawers were a random mess of values, and it would require a big effort to clean up
the chaos. I left the task for a rainy day.

Not long after, however, I decided to move my collection of resistors from a multi-
bin container to a set of drawers. I created the color labels that I had intended to
use for work and labeled the drawers. That was about 10 years ago. I still have the
drawers, but the labels have, after a decade, faded. So I decided to relabel the
drawers. The color labels make it really easy to confirm resistor values when
putting components into the drawers.

I created several .pdf files of the "E24" series and they are here for anyone who
may find them useful.

Resistors from 1.0 ohm to 9.1 ohm

Resistors from 10 ohm to 91 ohm

Resistors from 100 ohm to 910 ohm

Resistors from 1.0 kohm to 9.1 kohm

Resistors from 10 kohm to 91 kohm

Resistors from 100 kohm to 910 kohm

Resistors from 1.0 Mohm to 10 Mohm

This is a picture of eight new labels, and four of the old, faded labels.

http://www.usbmicro.com/apps/draw1M.pdf
http://www.usbmicro.com/apps/draw100k.pdf
http://www.usbmicro.com/apps/draw10k.pdf
http://www.usbmicro.com/apps/draw1k.pdf
http://www.usbmicro.com/apps/draw100.pdf
http://www.usbmicro.com/apps/draw10.pdf
http://www.usbmicro.com/apps/draw1.pdf
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
http://www.usbmicro.com/index.html

The .pdf drawer files are the "E24" series, for the "E12" series, just skip the labels
not needed. For "E48" you are on your own...

E12 Series:

1.0 1.2 1.5 1.8 2.2 2.7
3.3 3.9 4.7 5.6 6.8 9.1

E24 Series:

1.0 1.1 1.2 1.3 1.5 1.6
1.8 2.0 2.2 2.4 2.7 3.0
3.3 3.6 3.9 4.3 4.7 5.1
5.6 6.2 6.8 7.5 8.2 9.1

E48 Series:

1.00 1.05 1.10 1.15 1.21 1.27
1.33 1.40 1.47 1.54 1.62 1.69
1.78 1.87 1.96 2.05 2.15 2.26
2.37 2.49 2.61 2.74 2.87 3.01
3.16 3.32 3.48 3.65 3.83 4.02
4.22 4.42 4.64 4.87 5.11 5.36
5.62 5.90 6.19 6.49 6.81 7.15
7.50 7.87 8.25 8.66 9.09 9.53

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC

AVR Dragon Development Tool

Online Development Notebook > Index > Misc Applications Information > AVR Dragon Development
Tool

AVR Dragon Development Tool

Atmel has introduced a small and inexpensive development tool called the AVR
Dragon. This USB device can be used as an AVR programmer and emulator. The
documentation for the AVR Dragon is part of AVR Studio. I pulled the AVR Dragon
specific information from AVR Studio. You can get a pdf of that information here.

AVR Programming
The AVR Dragon doesn't come with even a socket for programming, so extensive
modifications to the tool will be needed. The Dragon supports In System
Programming (ISP) via a "standard" six pin ISP connector. This six pin connector is
the ISP connector that I commonly use in my AVR-based designs.

The Dragon also has a High Voltage Serial Programming interface, a Parallel
Programming interface, and JTAG. I have a number of AVR devices (ATtiny26) that
have fuse settings that need to be correctly reprogrammed, so the Parallel
Programming mode will come in very handy.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.usbmicro.com/apps/dragon.pdf
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
http://www.usbmicro.com/index.html

Red 4 Digit 7 Segment Display

Online Development Notebook > Index > Misc Applications Information > Red 4 Digit 7 Segment
Display

Red 4 Digit 7 Segment Display

Display from old clock: Common cathode, red.

Pins left to right (1 to 14)

1 - Digit 3

2 - Segment a

3 - Digit 2

4 - Digit 1

5 - Segment e

6 -

7 - Segment d

8 -

9 - DP

guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
http://www.usbmicro.com/index.html

10 - Segment c

11 - Digit 4

12 - Segment g

13 - Segment f

14 - Segment b

0 = abcdef

1 = bc

2 = abdeg

3 = abcdg

4 = bcfg

5 = acdfg

6 = acdefg

7 = abc

8 = abcdefg

9 = abcdfg

A = abcefg

b = cdefg

C = adef

d = bcdeg

E = adefg

F = aefg

- = g

{blank} = none of the segments

RobotBASIC Code to cycle 1234 across this display. Note that this test circuit does
not use current limiting resistors, as the U401 (old style of board) is limited in the
output current that is can produce.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC

Links

Online Development Notebook > Index > Links

USBmicro Links to Related Internet Sites

The links listed below provide additional information on USB, Simmsticks, and
general development with microcontrollers.

USB - General USB information

CircuitGizmos - Creative Products for Creative Minds

SimmSticks - Simmstick boards

Kadtronix - Digio U401/421 control program

StrandControl Home Domination - Home Automation

Magazines - Embedded development magazines

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://281B9B0A2B4F7AD69C406E45C47924078C76DB24
guidnode://81E1E97D127B904E76B310E84E49FA9DF591555C
guidnode://0FC6D3656F1ACC65732A773FC984F14140A56AF9
guidnode://1B087C05E9DA90ADD4408B1F72355835C7F938EA
guidnode://1B087C05E9DA90ADD4408B1F72355835C7F938EA
guidnode://E2A95BCF0AC6471BBB6EA6F34C9F21596DE86610
http://www.usbmicro.com/index.html

USB

Online Development Notebook > Index > Links > USB

Additional Information on USB

General USB Information

USB Org is the official USB website. Here you can download the entire basic USB
specification as well ad the class extensions.

USB Design by Example
"USB Design by Example: A Practical Guide to Building I/O Devices" by John Hyde
www.USB-by-example.com

John has a second edition to the USB book that he wrote that has support at the
Intel Site www.intel.com . The book also discusses using hosts other than Windows.

USB Complete
"USB Complete: Everything You Need to Develop Custom USB Peripherals" by Jan

http://www.intel.com/
http://www.usb-by-example.com/
http://www.usb.org/
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

Axelson www.lvr.com

Jan's site contains a great deal of very useful interfacing information for USB, the
serial port, and the parallel port. Jan writes articles for Nuts and Volts magazine
about USB.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.lvr.com/

CircuitGizmos

Online Development Notebook > Index > Links > CircuitGizmos

CircuitGizmos

CircuitGizmos

CircuitGizmos sells USBmicro devices in the United States.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.circuitgizmos.com/
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

SimmSticks

Online Development Notebook > Index > Links > SimmSticks

SimmSticks

Dontronics

Dontronics sells the U401/421. Please see this ordering page to order the
U401/421 from Dontronics.

The Dontronics website contains a significant amount of information on PICs, AVRs
and other processors that are used in the Dontronics SimmStick(tm) products.

Dontronics produces SimmSticks that can be easily used with the U401.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.dontronics.com/u401.html
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

StrandControl Home Domination

Online Development Notebook > Index > Links > StrandControl Home Domination

StrandControl Home Domination

Home Domination

"Like World Domination, But Without All The Hassle!"

Home Domination is Windows home automation software that supports the U4x1
devices. With Home Domination you can create powerful macros that can be
triggered by inputs connected to U4x1 devices as well as by X10 signals or trigger
at selected times. You can control U4x1 devices or X10 devices and there are
numerous other macro actions that let you take snapshots from video devices,
send email, play sounds, start other programs, and more. It has a remote client as
well so you can control your U4x1 devices from anywhere in the world!

StrandControl (www.homedomination.com) sells the U401, U421, U451, and the
U421-SC3. They can be purchased with the home automation software, or
separately.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.homedomination.com/
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

RobotBASIC

Online Development Notebook > Index > Links > RobotBASIC

RobotBASIC

RobotBASIC is a powerful language that can:

 Simulate a robot with many types of sensors

 Control a real robot using the wireless protocol

 Create animated simulations and video games

 Handle complex engineering problems

 Motivate students to learn

 Create contests for Robot Clubs

guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

Best of all: Interface to the U401/U421. RobotBASIC is free and available here:
RobotBASIC.org

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.robotbasic.org/

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59

Kadtronix

Online Development Notebook > Index > Links > Kadtronix

Kadtronix

USB Digital I/O Commander

Specializing in software and systems for industrial, research, and OEM use.

Kadtronix sells the U401/421 bundled with the control program called Digio. Please
see the Kadtronix web site or the Digio app note.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the
author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

http://www.kadtronix.com/
guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92
guidnode://806658ADF65B7F49A43868D93F0444D12961EA92
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

Magazines / Info

Online Development Notebook > Index > Links > Magazines

Magazines

Circuit Cellar
Circuit Cellar - An embedded design magazine that is "by engineers and for
engineers".

Circuit Cellar presents embedded design projects and industry information in a
friendly, readable format.

Nuts & Volts
Nuts & Volts - Everything for Electronics.

Electronic projects.

Servo Magazine
Servo Magazine for the Next Generation of Robotics Experimenters.

Robotics projects.

Make: Magazine
Make: Magazine technology on your time.

Make magazine covers a wide range of topics tied together by peoples desire to
repurpose the world around them.

Hardware: U401 USB Interface U421 USB Interface U451 USB Interface

Programming: USBm DLL Programming Download Files

Application Notes: U4x1 Application Notes Misc Applications and Information FAQ

While every effort has been made to make sure that the information posted on this site is correct, the

guidnode://C49863B87E782E58F79E7EEC9775A6CA167AC0B7
guidnode://451A3286EB21AB12B000C3E756504C1A29865A07
guidnode://9DC363B47742D7DA5F87A08C7F68301F355D6EAC
guidnode://15920044F31484C5058EE6CD48EEE158E9109702
guidnode://CEC9351265A86574ED25881F2AD18A2A0F92ED59
guidnode://BA776D9CD765B2F7FA68ABA88C1F247FC3A76F25
guidnode://2CDECB6069BC98A8B0B408E789A25B26FDF6DF71
guidnode://555CE987BEF556101735F5D26CE4356BD3400BDC
http://www.makezine.com/
http://www.servomagazine.com/
http://www.nutsvolts.com/
http://www.circuitcellar.com/
guidnode://DC7AAA68A2EE36863C6A4AD149EB3251287AFBFD
http://www.usbmicro.com/index.html

author can not be held liable for any damages whatsoever for losses as a result of the application of this
information. Use this information at your own risk.

USBmicro can design your custom and semi-custom USB product. Email about USB design can be
directed to " Robert " at usbmicro.com.

Copyright © USBmicro, L.L.C., 2002-2010

